1,409 research outputs found

    Teaching sustainable and integrated resource management using an interactive nexus model

    Get PDF
    Purpose – The purpose of this paper was to enhance and complement teaching about resource system feedbacks and environmental modelling. Students were given an interactive exercise based on a research model (ForeseerTM), developed by an inter-disciplinary research team, that explores the interconnectivity of water, energy and land resources. Two groups of students were involved, one of undergraduates and the other of graduates. Design/methodology/approach – The Foreseer model represents physical flows of the three resources (water, energy and land) using an interactive visual interface. The exercise was set up by giving students short instructions about how to use the tool to create four scenarios, and an online questionnaire was used to capture their understanding and their ability to extract information from the model. Findings – The exercise proved to be a helpful way to connect research and teaching in higher education, to the benefit of both. For students, it was an interactive and engaging way to learn about these complex sustainability issues. At the same time, it provided tangible feedback to researchers working on the model about the clarity of its user interface and its pedagogic value. Originality/value – This exercise represents a novel use of a resource model as a teaching tool in the study of the water, energy and land nexus, and is relevant to sustainability educators as an example of a model-centred learning approach on this topic. This is the author accepted manuscript. The final version is available from Emerald via http://dx.doi.org/10.1108/IJSHE-02-2014-002

    Transcranial Doppler Ultrasound Detection of Microemboli as a Predictor of Cerebral Events in Patients with Symptomatic and Asymptomatic Carotid Disease: A Systematic Review and Meta-Analysis.

    Get PDF
    OBJECTIVE: Identification of patients who will benefit from carotid endarterectomy is not entirely effective, primarily utilising degree of carotid stenosis. This study aimed at determining if microembolic signals (MES) detected by transcranial Doppler ultrasound (TCD) can provide clinically useful information regarding stroke risk in patients with carotid atherosclerosis. METHODS: A meta-analysis of prospective studies was performed. Three analyses were proposed investigating MES detection as a predictor of: stroke or TIA, stroke alone, and stroke or TIA but with an increased positivity threshold. Subgroup analysis was used to compare pre-operative (symptomatic or asymptomatic) patients and peri- or post-operative patients. RESULTS: Twenty-eight studies reported data regarding both MES status and neurological outcome. Of these, 22 papers reported data on stroke and TIA as an outcome, 19 on stroke alone, and eight on stroke and TIA with increased positivity threshold. At the median pre-test probability of 3.0%, the post-test probabilities of a stroke after a positive and negative TCD were 7.1% (95% CI 5-10.1) and 1.2% (95% CI 0.6-2.5), respectively. In addition, the sensitivities and specificities of each outcome showed that increasing the threshold for positivity to 10 MES per hour would make TCD a more clinically useful tool in peri- and post-operative patients. CONCLUSION: TCD provides clinically useful information about stroke risk for patients with carotid disease and is technically feasible in most patients. However, the generally weak level of evidence constituting this review means definitive recommendations cannot be made

    China's energy-water nexus - assessment of the energy sector's compliance with the "3 Red Lines" industrial water policy

    Get PDF
    Increasing population and economic growth continue to drive China's demand for energy and water resources. The interaction of these resources is particularly important in China, where water resources are unevenly distributed, with limited availability in coal-rich regions. The “3 Red Lines” water policies were introduced in 2011; one of their aims is to reduce industrial water use, of which the energy sector is a part. This paper analyses current water withdrawals and consumption for all energy processes and assesses the sector's compliance with the industrial water policy under different scenarios, considering potential future policy and technological changes. The results show that future energy plans could conflict with the industrial water policy, but the amount of water used in the energy sector is highly dependant on technology choices, especially for power plant cooling. High electricity demand in the future is expected to be met mainly by coal and nuclear power, and planned inland development of nuclear power presents a new source of freshwater demand. Taking a holistic view of energy and water-for-energy enables the identification of co-benefits and trade-offs between energy and water policies that can facilitate the development of more compatible and sustainable energy and water plans.The authors would like to thank EPSRC and BP (Grant no. RG60538) for their funding support.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0301421515001196#

    Not all low-carbon energy pathways are environmentally "no-regrets" options

    Get PDF
    Energy system pathways which are projected to deliver minimum possible deployment cost, combined with low Greenhouse Gas (GHG) emissions, are usually considered as ‘no-regrets’ options. However, the question remains whether such energy pathways present ‘no-regrets’ when also considering the wider environmental resource impacts, in particular those on land and water resources. This paper aims to determine whether the energy pathways of the UK’s Carbon Plan are environmental “no-regrets” options, defined in this study as simultaneously exhibiting low impact on land and water services resulting from resource appropriation for energy provision. This is accomplished by estimating the land area and water abstraction required by 2050 under the four pathways of the Carbon Plan with different scenarios for energy crop composition, yield, and power station locations. The outcomes are compared with defined limits for sustainable land appropriation and water abstraction. The results show that of the four Carbon Plan pathways, only the “Higher Renewables, more energy efficiency” pathway is an environmental “no-regrets” option, and that is only if deployment of power stations inland is limited. The study shows that policies for future low-carbon energy systems should be developed with awareness of wider environmental impacts. Failing to do this could lead to a setback in achieving GHG emission reductions goals, because of unforeseen additional competition between the energy sector and demand for land and water services in other sectors.This work has been funded by Engineering and Physical Sciences Research Council (EPSRC) through the Whole System Energy Modelling (wholeSEM) consortium. EPSRC Grant number EP/K039326/1This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.gloenvcha.2015.10.00

    Land use implications of future energy system trajectories-The case of the UK 2050 Carbon Plan

    Get PDF
    The UK's 2008 Climate Change Act sets a legally binding target for reducing territorial greenhouse gas emissions by 80% by 2050, relative to 1990 levels. Four pathways to achieve this target have been developed by the Department of Energy and Climate Change, with all pathways requiring increased us of bioenergy. A significant amount of this could be indigenously sourced from crops, but will increased domestic production of energy crops conflict with other agricultural priorities? To address this question, a coupled analysis of the UK energy system and land use has been developed. The two systems are connected by the production of bioenergy, and are projected forwards in time under the energy pathways, accounting for various constraints on land use for agriculture and ecosystem services. The results show different combinations of crop yield and compositions for the pathways lead to the appropriation of between 7 and 61% of UK's agricultural land for bioenergy production. This could result in competition for land for food production and other land uses, as well as indirect land use change in other countries due to an increase in bioenergy imports. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.This work has been funded by ESPRC through the Whole System Energy Modelling (wholeSEM) consortium. EPSRC Grant number EP/K039326/1.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.enpol.2015.07.00

    Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD

    Get PDF
    Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers
    • 

    corecore