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Abstract 

Introduction – Identification of patients who will benefit from carotid endarterectomy is not entirely 

effective primarily utilising degree of carotid stenosis. We aimed to determine if microembolic signals 

(MES) detected by transcranial Doppler ultrasound (TCD) can provide clinically useful information 

regarding stroke risk in patients with carotid atherosclerosis. 

 

Methods – We performed a meta-analysis of prospective studies. Three analyses were proposed 

investigating MES detection as a predictor of: stroke or TIA, stroke alone, and stroke or TIA but with 

an increased positivity threshold. Subgroup analysis was used to compare pre-operative 

(symptomatic or asymptomatic) patients and peri- or post-operative patients. 

 

Results – 28 studies reported data regarding both MES status and neurological outcome. Of these, 22 

papers reported data on stroke and TIA as an outcome, 19 on stroke alone, and 8 on stroke and TIA 

with increased positivity threshold. At the median pre-test probability of 3.0%, the post-test 

probabilities of a stroke after a positive and negative TCD were 7.1% (95% CI 5 to 10.1) and 1.2% 

(95% CI 0.6 to 2.5) respectively. In addition, the sensitivities and specificities of each outcome 

showed that increasing the threshold for positivity to 10 MES per hour would make TCD a more 

clinically useful tool in peri- and post-operative patients. 

 

Conclusion – TCD provides clinically useful information about stroke risk for patients with carotid 

disease and is technically feasible in the majority of patients. However, the generally weak level of 

evidence constituting this review means definitive recommendations cannot be made. 

 

Keywords – Transcranial Doppler ultrasound; microembolic signals; carotid disease; stroke; transient 

ischaemic attack 
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Introduction  

Management of patients with internal carotid artery stenosis is founded on statistical evidence 

provided by three trials: The North American Symptomatic Carotid Endarterectomy Trial (NASCET), 

European Carotid Surgery Trial (ECST) and Veterans Affairs Cooperative Study (VACS). All used 

degree of internal carotid artery stenosis as the indicator of stroke risk [(1)]. Results showed definitive 

benefit for carotid surgery in symptomatic patients with a 70% or greater stenosis [(2)]. This forms the 

basis of current clinical recommendations; however not all of these patients will benefit from 

surgicb;lal intervention. Improved quantification of an individual’s risk of future stroke would allow 

better patient selection for intervention. 

 

First established in 1982 [(3)], transcranial Doppler ultrasound (TCD) is an imaging technique used to 

detect the presence of small particles which may dislodge from an atherosclerotic plaque and flow 

into cerebral vessels. These microemboli reflect ultrasound more effectively than the surrounding cells 

giving a characteristic high intensity short duration signal on TCD. It is proposed that the presence of 

microemboli indicates an unstable or ‘vulnerable’ carotid plaque which may lead to rupture, thrombus 

formation or occlusion of the carotid artery resulting in a stroke [(4)]. Data suggest that microembolic 

signals (MES) recorded by TCD correlate with stroke risk. A potential link between the two has been 

known about for a long time, resulting in a significant amount of data. None of the studies performed 

so far have been definitive and therefore summation of the available evidence by meta-analysis will 

provide a better picture of the current evidence on the degree of correlation between MES on TCD 

and stroke risk. We performed a formal meta-analysis based on Cochrane methodological standards. 

 

A common criticism of TCD is that increased temporal bone thickness inhibits scanning in a certain 

proportion of patients. Therefore, we also investigated the incidence of this in the papers selected for 

meta-analysis. 

Objectives  

To determine the prognostic accuracy for stroke and/or TIA of MES recorded by TCD ultrasound in 

patients with carotid atherogenic disease. 
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To determine the feasibility of TCD ultrasound in patients with carotid disease by quantifying the 

temporal bone window availability in studies selected for the primary objective.  

 

Materials and Methods  

Ethical approval was not required for this paper. We conducted this review in accordance with 

PRISMA and Cochrane reporting guidelines. 

 

Study selection 

A multiple electronic health database search was performed using Medline (PubMed), Embase and 

The Cochrane Database. This included all prospective studies between 1990 and September 2015 

describing the use of TCD and the detection of MES in patients with carotid atherosclerosis.  

 

Search terms used were: 

(High intensity transient signals OR microembolic signal OR embolic signal OR transcranial Doppler 

OR transcranial ultrasound OR transcranial ultrasonography) 

AND 

(Amaurosis fugax OR transient ischaemic attack OR TIA OR carotid stenosis OR stroke) 

 

Two independent review authors assessed all papers returned by the search using the title and 

abstract. Any divergence was resolved through discussion. Full articles were selected if the abstract 

suggested the presence of relevant data. The reference lists of all included studies and previously 

published reviews were hand searched. 

 

Inclusion criteria 
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All prospective studies were included, irrespective of blinding, language, publication status or study 

setting. Any patient with atherosclerosis of the carotid artery, either directly evidenced or suspected 

as the cause of neurological damage was included in this review. 

 

Data pertaining to microemboli count and stroke and/or TIA was extracted using a physical criteria 

form. Temporal bone window availability data was extracted where available. 

 

Exclusion criteria 

Studies lacking TCD scan results or information of patient cerebrovascular events were excluded. Any 

papers which indicated the duplication of subjects from previous studies were excluded. 

 

Assessment of methodological quality  

Papers were assessed for risk of bias using the QUADAS-2 tool as found in the Revman Cochrane 

software(5).  

 

Statistical analysis and data synthesis  

Three analyses were proposed, all of which assessed the detection of MES by TCD in the middle 

cerebral artery. These investigated MES detection as a predictor of: 

1. Stroke or TIA; 

2. Stroke alone; and 

3. Stroke or TIA, with a higher positivity threshold (greater than ten microemboli) 

Subgroup analysis was proposed to compare pre-operative (symptomatic or asymptomatic) patients 

and peri- or post-operative patients. Due to the data collected, this was only possible in the stroke or 

TIA and the stroke only group. Division of patients into symptomatic and asymptomatic groups was 

also considered, however it would have likely meant that meta-analysis could not be performed 

because of the repeated division of results by category. 
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Data was managed using the Cochrane systematic review software, Revman 5.2. Analysis was 

performed using the METADAS procedure in SAS version 9.4 (SAS Institute Inc., Cary, North 

Carolina, USA). We used the bivariate random effects model for all analyses. This process was used 

to produce meta-analysis of data sensitivity, specificity, positive likelihood ratio and negative likelihood 

ratio. The likelihood ratio expresses the discriminatory value of a diagnostic test. A positive likelihood 

ratio of greater than five indicates that the test has high discriminatory value, whereas when the 

positive likelihood ratio approaches one, the test has no diagnostic value. The same is true for the 

negative likelihood ratio, with a value of 0.2 demonstrating high discriminatory power and a value 

approaching one representing little to no discriminatory power. The probability of any of the patients 

included in each analysis suffering an event (the pre-test probability) was calculated and multiplied by 

the positive and negative likelihood ratio to generate post-test probabilities. A positive post-test 

probability indicates the percentage chance of a cerebrovascular event in a patient with a positive 

TCD test for MES. A perfect test has a positive and negative post-test probability of 100 and 0 

respectively. We compared pre- and post-test probabilities in order to determine how useful the test is 

at identifying high risk and low risk patients. Extracted temporal bone window availability data was 

averaged across all patients scanned.  

Results  

Selected studies 

Three thousand two hundred and twenty-three papers were identified by the original search. This was 

reduced to 509 on abstract screening and 62 on full text assessment. A total of 28 studies provided 

data for meta-analysis. A flow diagram representing this can be found in figure 1. Of these, 22 papers, 

including 3720 patients, reported stroke or TIA as their target condition. Nineteen papers, with 5570 

patients, reported stroke as their target condition. Eight papers, with 1414 patients, reported stroke or 

TIA with a higher positivity threshold as their target condition. Several papers reported data for more 

than one of the three analyses in the same individuals. Since direct comparison of the different 

outcomes was not performed, the same data was used in multiple analyses. The characteristics of 

studies included for meta-analysis can be found in table 1 and table 2.  
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Methodological quality of included studies  

The results of QUADAS-2 assessment of papers are shown in figures 2 and 3. The quality of the 

evidence was generally low. Over 50% of studies had a high risk of bias for both patient selection and 

flow and timing sections of the QUADAS-2 protocol. In addition, there is unclear risk of bias for all 

studies with regards to the reference standard.  

 

Review authors' judgements about each domain presented as percentages across included studies. 

This graph summarizes the general quality of evidence with over 50% of selected papers at high risk 

of patient selection and flow and timing bias. Every paper had an unclear risk of bias with regards to 

the reference standard which is occurrence of stroke with or without TIA. Almost all papers were 

thought to be applicable to the review question. 

 

Findings 

There were three analyses performed. These were of TCD detection of MES as a predictor of: stroke 

or TIA, stroke alone, and stroke or TIA with increased positivity threshold. 

 

Stroke or TIA 

Twenty-two studies reported stroke or TIA as an outcome along with data for TCD recording of 

microembolic signals with a total of 3720 individual patients (6–26). The sensitivity and specificity 

were 79.87 (95% CI 63.39 to 90.09)* and 67.07 (95% CI 56.56 to 76.11)* respectively (* = P<0.05). 

The positive and negative likelihood ratios were 2.43 (95% CI 1.85 to 3.18)* and 0.30 (95% CI 0.16 to 

0.55)* respectively. The median pre-test probability for these studies was 6.7%. The corresponding 

positive and negative post-test probabilities were 14.8% (95% CI 11.7 to 18.6)* and 2.1% (95% CI 1.2 

to 3.8)* respectively. The results of the statistical analysis are detailed in table 3. Figure 4 shows how 

a positive and negative TCD test change the chance of a patient suffering stroke or TIA with a range 

of pre-test probabilities.  
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Subgroup analysis stroke or TIA 

The same analysis was performed separately for pre-operative patients and peri- and post-operative 

patients.  

For the preoperative group the sensitivity and specificity were 68.73 (95% CI 50 to 82.85) and 79.96 

(95% CI 72.24 to 85.95)* respectively. The positive and negative likelihood ratios were 3.43 (95% CI 

2.42 to 4.87)* and 0.39 (95% CI 0.23 to 0.66)* respectively. At the median pre-test probability of 6.7%, 

the post-test probabilities of a positive and negative test were 19.8% (95% CI 14.8 to 25.9)* and 2.7% 

(95% CI 1.6 to 4.5)* respectively. The full results are summarised in Summary of findings table 1. 

 

For the peri- and postoperative group the sensitivity and specificity were 89.61 (95% CI 70.8 to 

96.84)* and 46.38 (95% CI 35.27 to 57.85) respectively. The positive and negative likelihood ratios 

were 1.67 (95% CI 1.34 to 2.08)* and 0.22 (95% CI 0.07 to 0.67)* respectively. At the median pre-test 

probability of 6.7%, the post-test probabilities of a positive and negative test were 10.7% (95% CI 8.8 

to 13)* and 1.6% (95% CI 0.5 to 4.6)* respectively. The full results are summarised in Summary of 

findings table 1. 

 

The differences between subgroups were found to be significant with a Chi squared value of 0.001* 

derived from the differences in log likelihood ratios. 

 

Stroke 

Nineteen studies, with a total of 5570 individual patients, reported stroke as an outcome along with 

data for TCD recording of microembolic signals (7–10,13,16,18–20,23,27–34). The sensitivity and 

specificity were 73.14 (95% CI 48.16 to 88.86) and 70.27 (95% CI 58.61 to 79.78)* respectively. The 

positive and negative likelihood ratios were 2.46 (95% CI 1.69 to 3.59)* and 0.38 (95% CI 0.18 to 

0.81)* respectively. At the median pre-test probability of stroke of 3.0%, the post-test probabilities of a 

positive and negative TCD were 7.1% (95% CI 5 to 10.1)* and 1.2% (95% CI 0.6 to 2.5)* respectively. 
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The full results are summarised in table 4 with a graphical illustration of the corresponding post-test 

probabilities for various pre-test probabilities shown in figure 5. 

 

Subgroup analysis stroke 

The same analysis was performed separately for pre-operative patients and peri- and post-operative 

patients.  

 

For the preoperative group the sensitivity and specificity were 71.27 (95% CI 41.49 to 89.67) and 

83.72 (95% CI 76.61 to 88.98)* respectively. The positive and negative likelihood ratios were 4.38 

(95% CI 2.99 to 6.4)* and 0.34 (95% CI 0.15 to 0.81)* respectively. At the median pre-test probability 

of 3.0%, the post-test probabilities of a positive and negative test were 12% (95% CI 8.6 to 16.7)* and 

1.1% (95% CI 0.5 to 2.5)* respectively. The full results are summarised in Summary of findings table 

2. 

 

For the peri- and postoperative group the sensitivity and specificity were 78.86 (95% CI 44.75 to 94.5) 

and 47.43 (95% CI 35.69 to 59.46) respectively. The positive and negative likelihood ratios were 1.5 

(95% CI 1.12 to 2.02)* and 0.45 (95% CI 0.15 to 1.35) respectively. At the median pre-test probability 

of 3.0%, the post-test probabilities of a positive and negative test were 4.5% (95% CI 3.4 to 5.9)* and 

1.4% (95% CI 0.5 to 4) respectively. The full results are summarised in Summary of findings table 2 . 

 

The differences between subgroups were found to be significant with a Chi squared value of less than 

0.001 derived from the differences in log likelihood ratios. 

 

Stroke or TIA High MES Count 

Eight studies, with a total of 1414 individual patients, reported stroke or TIA as an outcome along with 

data for TCD recording of microembolic signals with high MES counts defined as positive(13,17–

19,21,32,33,35). The sensitivity and specificity were 52.38 (95% CI 30.59 to 73.29) and 90.07 (95% 

CI 83.72 to 94.12)* respectively. The positive and negative likelihood ratios were 5.27 (95% CI 2.73 to 
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10.17)* and 0.53 (95% CI 0.33 to 0.85)* respectively. At the median pre-test probability of 3.1%, the 

post-test probabilities of a positive and negative TCD were 14.4% (95% CI 8 to 24.5)* and 1.7% (95% 

CI 1.0 to 2.7)* respectively. The full results are summarised in table 5 with a graphical illustration of 

the corresponding post-test probabilities for various pre-test probabilities shown in figure 6. 

Temporal Bone Window 

Thirteen studies reported data relating to temporal bone window availability with a total of 2400 

patients. These papers showed an average of 89.0% of patients had a thin enough temporal bone for 

scanning. 

Discussion  

This review investigates whether TCD examination could play a clinically useful role in assessing the 

risk of stroke in patients with carotid disease. To do so it must differentiate between patients at high 

and low risk of future events.  

 

Quality of Evidence 

The general quality of the evidence was low. There were methodological issues with patient selection 

because of the observational nature of the data. Technical issues resulted in exclusions of patients 

which affected both patient selection and flow and timing (figure 2 and 3). For every study the risk of 

bias arising from the reference standard was unclear because it was generally unclear if the test was 

interpreted with or without knowledge of whether the patient suffered a stroke or TIA. Spence et al. 

2005, Spence et al. 2010 and Siebler et al. 1995 used two microemboli as positivity rather than one, 

and Sun et al. 2014 had TCD recordings for 30 minutes rather than an hour [5-8]. Whilst unlikely to 

skew the data it should be taken into account when interpreting results. Because of these issues the 

quality of evidence is low which should be considered when interpreting the results. 

 

Stroke or TIA 

The results are all statistically significantly different from a test which provides no useful information, 

i.e. a ‘fifty/fifty’ guess, therefore TCD does provide clinically useful information. As stated earlier the 
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low quality of evidence means these findings should be viewed cautiously. In addition, the important 

question is how much information is gained and whether this is enough to recommend its use. The 

nature of available evidence does not provide appropriate data for answering this question. To 

definitively quantify how useful a test is direct comparison with all alternative tests should be 

performed.  

 

The differences between studies with and without the covariate were found to be significant with a Chi 

squared value of 0.00045* derived from the differences in log likelihood ratios. This means that TCD 

has a different ability to predict stroke or TIA in preoperative patients and peri or postoperative 

patients. Recording done in peri or postoperative patients has superior sensitivity however the 

specificity is reduced. This is unsurprising as MES counts tend to be very high during surgery and in 

the immediate postoperative period because of the physical stress exerted on the plaque as well as 

iatrogenic sources of emboli. In this period the baseline number of microemboli that indicates high risk 

of plaque rupture is raised. This will result in fewer false negatives but more false positives as more 

patients will have microemboli. To take into account the differences between these two groups of 

patients it may be preferable to raise the baseline for positivity by requiring a certain microemboli rate 

before defining a peri- or post-operative patient as microemboli positive. 

 

Stroke 

TCD's specificity for predicting stroke was shown to be statistically significant. Sensitivity had a 

confidence interval which included 50 and therefore did not provide useful information in this regard. 

Further investigation is required to conclusively prove the utility of TCD in predicting stroke alone. This 

result is particularly important because prediction of stroke is clinically much more important than 

predicting stroke or TIA, as TIA is itself the gold standard for stroke prediction. What will actually save 

lives and brain function is the prediction of stroke not the prediction of TIA. Further investigation with 

stroke as the outcome alone is important. 

 

Subgroup analysis again revealed that TCD has a statistically significantly different ability to predict 

stroke in preoperative compared to peri or postoperative patients with a chi squared value less than 
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0.001. The same pattern emerges with decreased specificity in peri or postoperative patients but 

increased sensitivity, which provides validation of the data analysed because of the logical 

explanation for this repeated pattern. 

 

Stroke/TIA with high MES count 

Stroke or TIA with a high MES count for positivity threshold had a low sensitivity but high specificity 

(summary of findings table 3). The low sensitivity but high specificity is unsurprising due to the high 

baseline number of MES required for positivity meaning some patients with a few MES but not 

enough to be considered positive who have a stroke or TIA may be missed, however when a patient 

does have enough MES to be considered positive they are highly likely to suffer an event. It may be 

hypothesised that raising the baseline for MES positivity is most effective in peri- and post-operative 

patients. Unfortunately subgroup analysis was not possible for this outcome because the fixed effects 

bivariate model was considered inappropriate and using a random effects model makes covariate 

analysis unreliable.  

 

Strengths and weaknesses of the review  

King & Markus 2009 is the main review for comparison [(36)]. There is general overall agreement in 

both stroke and TIA and stroke as outcomes being predicted by MES presence. For the high MES 

threshold analysis King and Markus included papers with widely varying definitions of high 

microemboli rate and therefore included considerably more papers than the current review. This 

enabled them to find statistical significance in all subgroups. The heterogeneity which would be 

expected when included such a diverse number of studies may have been masked by the fact that the 

majority of papers reported no false positives which will cause the results to produce statistically 

similar odds ratios. 

The interval between MES recording and start of symptoms has not been taken into account in the 

analysis. This may provide further useful information when interpreting TCD results, however it was 

not considered within the scope of this study. Anti-platelet therapy may provide an additional 

confounder, as it is hypothesised that it may impact the number of MES. It was not investigated as 
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current evidence indicates that number of MES may not be changed by antiplatelet therapy(37), 

however if this were to change, the implications for use of TCD will be significant. 

 

Applicability of findings to the review question  

This review included a wide variety of patients. The evidence proves that TCD is predictive of stroke 

and TIA in both preoperative and peri and postoperative patients separately. TCD provides predictive 

information for stroke and for preoperative patients. There is not enough evidence to demonstrate that 

TCD provides predictive information for stroke in peri and postoperative patients because of a low 

specificity. It is unclear if there is genuinely too low a specificity for TCD to provide useful information 

in these patients. The low quality of evidence and number of studies means more high quality studies 

are required to explore this further. 

Conclusions  

This review demonstrates that TCD provides useful clinical evidence for the prediction of stroke and 

TIA. The weakness of the current evidence base means that more work is necessary in order to 

incorporate TCD into assessment of patients with carotid disease.  

 

The low level of evidence means large scale randomised control trials are required to establish TCD 

as an effective adjunct indicator of stroke along with carotid stenosis. Until clinical benefit over current 

predictors can be conclusively proved and quantified TCD cannot be adopted into clinical guidelines 

and therefore will not be universally applied. Future carotid trials need to establish a series of 

indicators which can be compiled into an accurate risk score of future stroke for each patient. Such 

indicators would include stenosis, TCD and physical plaque characteristics. An effective risk score for 

all patients with carotid disease will expedite the stroke response pathway which currently requires 

multidisciplinary collaboration because of the qualitative nature of alternative risk factors besides 

stenosis. Fast and effective risk assessment will enable a decrease in time from symptoms to surgery, 

ensuring the best possible patient outcome. 
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Abbreviations and symbols 

* statistical significance at the 95% confidence level when compared to random chance 

˂ indicates a number which whilst it rounds to a non-significant value the number itself is actually 

significant i.e. if the significance threshold is 1 0.99 will round up to 1.0 however it is still significant to 

a 95% confidence level. 

References 

1.  Imparato  a M, Riles TS, Mintzer R, Baumann FG. The importance of hemorrhage in the 

relationship between gross morphologic characteristics and cerebral symptoms in 376 carotid 

artery plaques. Ann Surg [Internet]. 1983 Feb;197(2):195–203. Available from: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1353109&tool=pmcentrez&renderty

pe=abstract 

2.  Rothwell PM, Eliasziw M, Gutnikov S a, Fox  a J, Taylor DW, Mayberg MR, et al. Analysis of 

pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid 

stenosis. Lancet [Internet]. 2003 Jan 11;361(9352):107–16. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/12531577 

3.  Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of 

flow velocity in basal cerebral arteries. J Neurosurg [Internet]. Journal of Neurosurgery 

Publishing Group; 1982 Dec 8 [cited 2014 Mar 16];57(6):769–74. Available from: 

http://thejns.org/doi/abs/10.3171/jns.1982.57.6.0769?url_ver=Z39.88-

2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed 

4.  Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.  

5.  Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a 

revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 



15 

 

 

[Internet]. American College of Physicians; 2011 Oct 18 [cited 2014 Sep 5];155(8):529–36. 

Available from: http://annals.org/article.aspx?articleid=474994 

6.  Abbott AL, Chambers BR, Stork JL, Levi CR, Bladin CF, Donnan GA. Embolic signals and 

prediction of ipsilateral stroke or transient ischemic attack in asymptomatic carotid stenosis: a 

multicenter prospective cohort study. Stroke [Internet]. 2005 Jun [cited 2013 Nov 

10];36(6):1128–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15879327 

7.  Markus HS, King A, Shipley M, Topakian R, Cullinane M, Reihill S, et al. Asymptomatic 

embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a 

prospective observational study. Lancet Neurol. 2010;9:663–71.  

8.  Molloy J, Markus HS. Asymptomatic embolization predicts stroke and TIA risk in patients with 

carotid artery stenosis. Stroke. 1999;30:1440–3.  

9.  Orlandi G, Fanucchi S, Sartucci F, Murri L. Can microembolic signals identify unstable plaques 

affecting symptomatology in carotid stenosis? Stroke. 2002/07/10 ed. 2002;33(7):1744–6.  

10.  Siebler M, Nachtmann A, Sitzer M, Rose G, Kleinschmidt A, Rademacher J, et al. Cerebral 

microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery 

stenosis. Stroke [Internet]. 1995/11/01 ed. 1995;26(11):2184–6. Available from: 

http://stroke.ahajournals.org/content/26/11/2184.long 

11.  Spence JD, Tamayo A, Lownie SP, Ng WP, Ferguson GG. Absence of microemboli on 

transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke 

[Internet]. 2005 Nov [cited 2013 Nov 10];36(11):2373–8. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/16224084 

12.  Zhang C, Qu S, Li H, Li G, Chen G, Wang J, et al. Microembolic signals and carotid plaque 

characteristics in patients with asymptomatic carotid stenosis. Scand Cardiovasc J. 

2009/10/30 ed. 2009;43(5):345–51.  

13.  Censori B, Partziguian T, Casto L, Camerlingo M, Mamoli  a. Doppler microembolic signals 

predict ischemic recurrences in symptomatic carotid stenosis. Acta Neurol Scand [Internet]. 

2000 May;101(5):327–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10987322 



16 

 

 

14.  Liu X, Xu Y, Wang J, Zhu Y, Ma X. Analysis on the clinical value of general combined epidural 

anesthesia in esophageal cancer surgery. [Chinese]. Anti-Tumor Pharm [Internet]. 

2013;3(6):455–8. Available from: 

http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/700/CN-00979700/frame.html 

15.  Markus HS, MacKinnon A. Asymptomatic embolization detected by Doppler ultrasound 

predicts stroke risk in symptomatic carotid artery stenosis. Stroke. 2005/04/09 ed. 

2005;36(5):971–5.  

16.  Valton L, Larrue V, Pavy Le Traon A, Geraud G. Cerebral microembolism in patients with 

stroke or transient ischaemic attack as a risk factor for early recurrence. J Neurol Neurosurg 

Psychiatry. 1998/01/07 ed. 1997;63(6):784–7.  

17.  Ackerstaff RG, Jansen C, Moll FL, Vermeulen FE, Hamerlijnck RP, Mauser HW. The 

significance of microemboli detection by means of transcranial Doppler ultrasonography 

monitoring in carotid endarterectomy. J Vasc Surg. 1995/06/01 ed. 1995;21(6):963–9.  

18.  Ogasawara K, Suga Y, Sasaki M, Chida K, Kobayashi M, Yoshida K, et al. Intraoperative 

microemboli and low middle cerebral artery blood flow velocity are additive in predicting 

development of cerebral ischemic events after carotid endarterectomy. Stroke. 2008/08/09 ed. 

2008;39(11):3088–91.  

19.  Wolf O, Heider P, Heinz M, Poppert H, Sander D, Greil O, et al. Microembolic signals detected 

by transcranial Doppler sonography during carotid endarterectomy and correlation with serial 

diffusion-weighted imaging. Stroke. 2004/09/25 ed. 2004;35(11):e373–5.  

20.  Laman DM, Wieneke GH, van Duijn H, van Huffelen AC. High embolic rate early after carotid 

endarterectomy is associated with early cerebrovascular complications, especially in women. J 

Vasc Surg. 2002/08/10 ed. 2002;36(2):278–84.  

21.  Abbott AL, Levi CR, Stork JL, Donnan GA, Chambers BR. Timing of clinically significant 

microembolism after carotid endarterectomy. Cerebrovasc Dis. 2007/02/03 ed. 2007;23:362–7.  

22.  Gao MY, Sillesen HH, Lorentzen JE, Schroeder T V. Eversion carotid endarterectomy 

generates fewer microemboli than standard carotid endarterectomy. Eur J Vasc Endovasc 



17 

 

 

Surg. 2000/08/16 ed. 2000;20(2):153–7.  

23.  Levi CR, Roberts AK, Fell G, Hoare MC, Royle JP, Chan A, et al. Transcranial Doppler 

microembolus detection in the identification of patients at high risk of perioperative stroke. Eur 

J Vasc Endovasc Surg. 1997/11/05 ed. 1997;14(3):170–6.  

24.  Tytgat SH, Laman DM, Rijken AM, Klicks R, Voorwinde A, Ultee JM, et al. Emboli rate during 

and early after carotid endarterectomy after a single preoperative dose of 120 mg 

acetylsalicylic acid--a prospective double-blind placebo controlled randomised trial. Eur J Vasc 

Endovasc Surg. 2005/01/15 ed. 2005;29(2):156–61.  

25.  Altaf N, Kandiyil N, Hosseini A, Mehta R, MacSweeney S, Auer D. Risk factors associated with 

cerebrovascular recurrence in symptomatic carotid disease: a comparative study of carotid 

plaque morphology, microemboli assessment and the European Carotid Surgery Trial risk 

model. J Am Heart Assoc. England; 2014 Jun;3(3):e000173.  

26.  Droste DW, Ritter M, Kemeny V, Schulte-Altedorneburg G, Ringelstein EB. Microembolus 

detections at follow-up in 19 patients with acute stroke: correlation with stroke etiology and 

antithrombotic treatment. Cerebrovasc Dis. 2000/07/06 ed. 2000;10(4):272–7.  

27.  Madani A, Beletsky V, Tamayo A, Munoz C, Spence JD. High-risk asymptomatic carotid 

stenosis: Ulceration on 3D ultrasound vs TCD microemboli. Neurology. 2011;77:744–50.  

28.  Spence JD, Coates V, Li H, Tamayo A, Muñoz C, Hackam DG, et al. Effects of intensive 

medical therapy on microemboli and cardiovascular risk in asymptomatic carotid stenosis. 

Arch Neurol [Internet]. 2010 Feb;67(2):180–6. Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/20008646 

29.  Liu WS, Zhu SF, Liu WF, Li GL, Jiang HQ. Relationship between microemboli in the internal 

carotid artery and the occurrence of ischemic stroke after transient ischemic attack. J Clin 

Neurosci. 2013/07/23 ed. 2013;20(10):1366–70.  

30.  van Zuilen E V, Moll FL, Vermeulen FE, Mauser HW, van Gijn J, Ackerstaff RG. Detection of 

cerebral microemboli by means of transcranial Doppler monitoring before and after carotid 

endarterectomy. Stroke. 1995/02/01 ed. 1995;26(2):210–3.  



18 

 

 

31.  Ackerstaff RG, Moons KG, van de Vlasakker CJ, Moll FL, Vermeulen FE, Algra A, et al. 

Association of intraoperative transcranial doppler monitoring variables with stroke from carotid 

endarterectomy. Stroke. 2000/08/06 ed. 2000;31(8):1817–23.  

32.  Golledge J, Gibbs R, Irving C, Clayton G, Bond D, Greenhalgh RM, et al. Determinants of 

carotid microembolization. J Vasc Surg. 2001/12/18 ed. 2001;34(6):1060–4.  

33.  van der Schaaf IC, Horn J, Moll FL, Ackerstaff RG. Transcranial Doppler monitoring after 

carotid endarterectomy. Ann Vasc Surg. 2005/02/17 ed. 2005;19(1):19–24.  

34.  Sun DJ, Zhuang AX, Zeng QH, Jiang YL, Jiang JD, Feng SQ, et al. A study of microemboli 

monitoring of atherosclerotic thrombotic cerebral infarction and artery stenosis. Genet Mol 

Res. 2014 Jan;13(3):6734–45.  

35.  Saedon M, Dilshad A, Tiivas C, Virdee D, Hutchinson CE, Singer DRJ, et al. Prospective 

validation study of transorbital Doppler ultrasound imaging for the detection of transient 

cerebral microemboli. Br J Surg. England; 2014 Nov;101(12):1551–5.  

36.  King A, Markus HS. Doppler embolic signals in cerebrovascular disease and prediction of 

stroke risk: a systematic review and meta-analysis. Stroke. 2009/10/24 ed. 2009;40(12):3711–

7.  

37.  de Borst GJ, Hilgevoord AA, de Vries JP, van der Mee M, Moll FL, van de Pavoordt HD, et al. 

Influence of antiplatelet therapy on cerebral micro-emboli after carotid endarterectomy using 

postoperative transcranial Doppler monitoring. Eur J Vasc Endovasc Surg. 2007/05/25 ed. 

2007;34(2):135–42.  

38. Consensus Committee of the Ninth International Cerebral Hemodynamic Symposium. Basic 

identification criteria of Doppler microembolic signals. Stroke. 1995; 26: 1123. 

39. MP Spencer, GI Thomas, SC Nicholls, LR Sauvage. Detection of middle cerebral artery 

emboli during carotid endarterectomy using transcranial Doppler ultra-sonography. Stroke, 21 (1990), 

pp. 415–423. 

40. Ringlestein EB, Droste DW, Babikian VL, Evans DH, Grosset DG, Kaps M, Markus HS, 

Russell D, Siebler M. International Consensus Group on Microembolus Detection. Consensus on 



19 

 

 

microembolus detection by TCD. Stroke. 1998;29:725–729.  

41. Markus HS, Molloy J. The use of a decibel threshold in the detection of embolic signals. 

Stroke. 1997;28:692–695. 

42. Ackerstaff R, Babikian V, Georgiadis D, Russell D, et al. (1995). Basic identification criteria of 

Doppler microembolic signals. Consensus Committee of the Ninth International Cerebral 

Hemodynamic Symposium. Stroke 26: 1123 

 

 

 

 


