17,444 research outputs found
Discharge coefficients for thick-plate orifices
Investigation enables more accurate prediction of coolant flows within internally cooled turbine blades and vanes. The data is applicable for predicting flows in complex flow passages
Methanol masers reveal the magnetic field of the high-mass protostar IRAS 18089-1732
Context. The importance of the magnetic field in high-mass-star formation is
not yet fully clear and there are still many open questions concerning its role
in the accretion processes and generation of jets and outflows. In the past few
years, masers have been successfully used to probe the magnetic field
morphology and strength at scales of a few au around massive protostars, by
measuring linear polarisation angles and Zeeman splitting. The massive
protostar IRAS 18089-1732 is a well studied high-mass-star forming region,
showing a hot core chemistry and a disc-outflow system. Previous SMA
observations of polarised dust revealed an ordered magnetic field oriented
around the disc of IRAS 18089-1732. Aims. We want to determine the magnetic
field in the dense region probed by 6.7 GHz methanol maser observations and
compare it with observations in dust continuum polarisation, to investigate how
the magnetic field in the compact maser region relates to the large-scale field
around massive protostars. Methods. We reduced MERLIN observations at 6.7 GHz
of IRAS 18089-1732 and we analysed the polarised emission by methanol masers.
Results. Our MERLIN observations show that the magnetic field in the 6.7 GHz
methanol maser region is consistent with the magnetic field constrained by the
SMA dust polarisation observations. A tentative detection of circularly
polarised line emission is also presented. Conclusions. We found that the
magnetic field in the maser region has the same orientation as in the disk.
Thus the large-scale field component, even at the au scale of the masers,
dominates over any small-scale field fluctuations. We obtained, from the
circular polarisation tentative detection, a field strength along the line of
sight of 5.5 mG which appeared to be consistent with the previous estimates.Comment: 12 pages, 7 figures, accepted for publication in A&
Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array
We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter
array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave
Background (CMB) anisotropies on arcminute scales. The interferometer was
placed in a compact configuration which produces high brightness sensitivity,
while providing discrimination against point sources. Operating at a frequency
of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have
made sensitive images of seven fields, five of which where chosen specifically
to have low IR dust contrast and be free of bright radio sources. Additional
observations with the Owens Valley Radio Observatory (OVRO) millimeter array
were used to assist in the location and removal of radio point sources.
Applying a Bayesian analysis to the raw visibility data, we place limits on CMB
anisotropy flat-band power Q_flat = 5.6 (+3.0 -5.6) uK and Q_flat < 14.1 uK at
68% and 95% confidence. The sensitivity of this experiment to flat band power
peaks at a multipole of l = 5470, which corresponds to an angular scale of
approximately 2 arcminutes. The most likely value of Q_flat is similar to the
level of the expected secondary anisotropies.Comment: 15 pages, 5 figures, LaTex, aas2pp4.sty, ApJ submitte
X-ray Insights Into Interpreting CIV Blueshifts and Optical/UV Continua
We present 0.5-8.0 keV Chandra observations of six bright quasars that
represent extrema in quasar emission-line properties -- three quasars each with
small and large blueshifts of the CIV emission line with respect to the
systemic redshift of the quasars. Supplemented with seven archival Chandra
observations of quasars that met our selection criteria, we investigate the
origin of this emission-line phenomenon in the general context of the structure
of quasars. We find that the quasars with the largest CIV blueshifts show
evidence, from joint-spectral fitting, for intrinsic X-ray absorption (N_H ~
10^22 cm^-2). Given the lack of accompanying CIV absorption, this gas is likely
to be highly ionized, and may be identified with the shielding gas in the
disk-wind paradigm. Furthermore, we find evidence for a correlation of
alpha_uv, the ultraviolet spectral index, with the hardness of the X-ray
continuum; an analysis of independent Bright Quasar Survey data from the
literature supports this conclusion. This result points to intrinsically red
quasars having systematically flatter hard X-ray continua without evidence for
X-ray absorption. We speculate on the origins of these correlations of X-ray
properties with both CIV blueshift and alpha_uv and discuss the implications
for models of quasar structure.Comment: 9 figs, 25 pages, AASTeX; accepted for publication in A
The Black Hole-Bulge Relationship in Luminous Broad-Line Active Galactic Nuclei and Host Galaxies
We have measured the stellar velocity dispersions (\sigma_*) and estimated
the central black hole (BH) masses for over 900 broad-line active galactic
nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes
objects which have redshifts up to z=0.452, high quality spectra, and host
galaxy spectra dominated by an early-type (bulge) component. The AGN and host
galaxy spectral components were decomposed using an eigenspectrum technique.
The BH masses (M_BH) were estimated from the AGN broad-line widths, and the
velocity dispersions were measured from the stellar absorption spectra of the
host galaxies. The range of black hole masses covered by the sample is
approximately 10^6 < M_BH < 10^9 M_Sun. The host galaxy luminosity-velocity
dispersion relationship follows the well-known Faber-Jackson relation for
early-type galaxies, with a power-law slope 4.33+-0.21. The estimated BH masses
are correlated with both the host luminosities (L_{H}) and the stellar velocity
dispersions (\sigma_*), similar to the relationships found for low-redshift,
bulge-dominated galaxies. The intrinsic scatter in the correlations are large
(~0.4 dex), but the very large sample size allows tight constraints to be
placed on the mean relationships: M_BH ~ L_H^{0.73+-0.05} and M_BH ~
\sigma_*^{3.34+-0.24}. The amplitude of the M_BH-\sigma_* relation depends on
the estimated Eddington ratio, such that objects with larger Eddington ratios
have smaller black hole masses than expected at a given velocity dispersion.Comment: Accepted for publication in A
The flow of plasma in the solar terrestrial environment
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence
15 GHz Monitoring of Gamma-ray Blazars with the OVRO 40 Meter Telescope in Support of Fermi
We present results from the first two years of our fast-cadence 15 GHz
gamma-ray blazar monitoring program, part of the F-GAMMA radio monitoring
project. Our sample includes the 1158 blazars north of -20 degrees declination
from the Candidate Gamma-Ray Blazar Survey (CGRaBS), which encompasses a
significant fraction of the extragalactic sources detected by the Fermi
Gamma-ray Space Telescope. We introduce a novel likelihood analysis for
computing a time series variability amplitude statistic that separates
intrinsic variability from measurement noise and produces a quantitative error
estimate. We use this method to characterize our radio light curves. We also
present results indicating a statistically significant correlation between
simultaneous average 15 GHz radio flux density and gamma-ray photon flux.Comment: 5 pages, 7 figures; 2009 Fermi Symposium; eConf Proceedings C09112
High-z radio starbursts host obscured X-ray AGN
We use Virtual Observatory methods to investigate the association between
radio and X-ray emission at high redshifts. Fifty-five of the 92 HDF(N) sources
resolved by combining
MERLIN+VLA data were detected by Chandra, of which 18 are hard enough and
bright enough to be obscured AGN. The high-z population of microJy radio
sources is dominated by starbursts an order of magnitude more active and more
extended than any found at z<1 and at least a quarter of these simultaneously
host highly X-ray-luminous obscured AGN.Comment: 4 pages, 2 figures, To appear in the proceedings of 'At the Edge of
the Universe' (9-13 October 2006, Sintra, Portugal
The F-GAMMA program: Multi-frequency study of Active Galactic Nuclei in the Fermi era. Program description and the first 2.5 years of monitoring
To fully exploit the scientific potential of the Fermi mission, we initiated
the F-GAMMA program. Between 2007 and 2015 it was the prime provider of
complementary multi-frequency monitoring in the radio regime. We quantify the
radio variability of gamma-ray blazars. We investigate its dependence on source
class and examine whether the radio variability is related to the gamma-ray
loudness. Finally, we assess the validity of a putative correlation between the
two bands. The F-GAMMA monitored monthly a sample of about 60 sources at up to
twelve radio frequencies between 2.64 and 228.39 GHz. We perform a time series
analysis on the first 2.5-year dataset to obtain variability parameters. A
maximum likelihood analysis is used to assess the significance of a correlation
between radio and gamma-ray fluxes. We present light curves and spectra
(coherent within ten days) obtained with the Effelsberg 100-m and IRAM 30-m
telescopes. All sources are variable across all frequency bands with amplitudes
increasing with frequency up to rest frame frequencies of around 60 - 80 GHz as
expected by shock-in-jet models. Compared to FSRQs, BL Lacs show systematically
lower variability amplitudes, brightness temperatures and Doppler factors at
lower frequencies, while the difference vanishes towards higher ones. The time
scales appear similar for the two classes. The distribution of spectral indices
appears flatter or more inverted at higher frequencies for BL Lacs. Evolving
synchrotron self-absorbed components can naturally account for the observed
spectral variability. We find that the Fermi-detected sources show larger
variability amplitudes as well as brightness temperatures and Doppler factors,
than non-detected ones. Flux densities at 86.2 and 142.3 GHz correlate with 1
GeV fluxes at a significance level better than 3sigma, implying that gamma rays
are produced very close to the mm-band emission region.Comment: Accepted for publication in section 4. Extragalactic astronomy of
Astronomy and Astrophysics (18 pages, 9 figures
- …