1,443 research outputs found

    Integrating photovoltaic cells into decorative architectural glass using traditonal glasspainting techniques and fluorescent dyes

    Get PDF
    Photovoltaic cells can be integrated into decorative glass, providing a showcase for this renewable technology, whilst assisting in the creation of sustainable architecture through generation of electricity from the building surface. However, traditional, opaque, square, crystalline-silicon solar cells contrast strongly with their surroundings when incorporated into translucent, coloured glazing. Methods of blending photovoltaic cells into their surroundings were developed, using traditional glass painting techniques. A design was created in which opaque paint was applied to the areas of glass around underlying photovoltaic cells. Translucent, platinum paint was used on the glass behind the photovoltaic cells. This covered the grey cell backs whilst reflecting light and movement. The platinum paint was shown to cause a slight increase in power produced by photovoltaic cells placed above it. To add colour, very small amounts of Lumogen F dye (BASF) were incorporated into a silicone encapsulant (Dow Corning, Sylgard 184), which was then used hold photovoltaic cells in place between sheets of painted glass. Lumogen dyes selectively absorb and emit light, giving a good balance between colour addition and electricity production from underlying photovoltaic cells. When making sufficient quantities of dyed encapsulant for a 600 x 450 mm test piece, the brightness of the dye colours faded, and fluorescence decreased, although some colour was retained. Improvement of the method, including testing of alternative encapsulant materials, is required, to ensure that the dyes continue to fluoresce within the encapsulant. In contrast, the methods of adding opacity variation to glass, through use of glass painting, are straightforward to develop for use in a wide variety of photovoltaic installations. Improvement of these methods opens up a wide variety of architectural glass design opportunities with integrated photovoltaics, providing an example of one new medium to make eco-architecture more aesthetically pleasing, whilst generating electricity

    Improving the aesthetics of photovoltaics in decorative architectural glass

    Get PDF
    Increasing colour variety in photovoltaics can improve the uptake of this renewable technology, which is vital to the creation of sustainable architecture. However, the introduction of colour into photovoltaics often involves increased cost and decreased efficiency. A method was found to add colour to photovoltaics, using luminescent materials: fluorescent organic dyes (BASF Lumogen). These selectively absorb and emit light, giving a good balance between colour addition and electricity production from underlying photovoltaic cells. Very small amounts of Lumogen dye were added to a silicone encapsulant (Dow Corning Sylgard 184), which was then used hold photovoltaic cells in place between sheets of painted glass. When making sufficient quantities of dyed encapsulant for a 600 x 450 mm testpiece, the dye colours faded, with low levels of fluorescence, although some colour was retained. Improvement of the method, including testing of alternative encapsulant materials, is required, to ensure that the dyes continue to fluoresce within the encapsulant. Although the Lumogen dyes are quite stable when compared to other dye molecules, in general organic dyes are not yet sufficiently durable to make this technology viable for installations that are to last for more than 20 years: the guaranteed lifetime of standard photovoltaic modules. Dye replenishment, or replacement of materials, will be required; or a product with a shorter ‘useful’ lifetime identified. This method opens up a wide variety of architectural glass design opportunities that incorporate photovoltaics, providing an example of one new medium to make eco-architecture more aesthetically pleasing, whilst generating electricity

    Medication Assisted Treatment: Prescription Drug and Opioid Addiction Expansion Project

    Get PDF
    Greater Portland Health (GPH) in collaboration with Preble Street Resource Center was awarded a Medication Assisted Treatment: Prescription Drug & Opioid Addiction (MOUD-PDOA) grant from SAMHSA. The GPH MOUD-PDOA project will include a mixed-methods evaluation led by Catherine E. Cutler Institute. The evaluation team will build knowledge and provide feedback to inform the implementation and refinement of the GPH MOUD-PDOA Program. Evaluation Goals: Document program strategies and identify barriers and facilitators to implementation Examine the efficacy of using a continuum of treatment services to increase access to MOUD among vulnerable populations in underserved communities Assess the impact of the intervention strategies on patient engagement and outcomes This report highlights the process and outcome evaluation data collected during Year 1. For more information, please contact M.Lindsey Smith or Kat Knight

    SUPPORT for ME: Key Stakeholder Interview Summary

    Get PDF
    This summary feedback report is organized to inform the Office of MaineCare Services goal of addressing barriers and finding new and/or improved ways to increase capacity in Maine for people who seek treatment and recovery services for substance use disorder. Interview protocols were designed to assess critical domains of interest for the state, which include: current and potential provider capacity, access to care & service delivery provider willingness, and financial/ administrative policies. Key Highlights from the stakeholder interviews indicated that: While there have been improvements in the integration of care for persons with behavioral health (BH) diagnoses, this integration has not fully synced with substance use disorder (SUD) services in Maine; better integration of BH and SUD is needed. Behavioral Health Homes and Opioid Health Homes are regarded as excellent models of care, and many key stakeholders would like to see this model of care expand for all members with a diagnosis of SUD. Low reimbursement rates for some SUD services including outpatient therapy, residential treatment, medically supervised withdrawal services and intensive outpatient treatment programs affect the quality of workforce, available services, and hinders capacity building efforts. Stigma exists regarding serving the population with SUD, at all levels- from state policymakers, to providers, and to the community. Maine lacks what some consider as basic SUD service options available elsewhere (e.g., variety of medication assisted-withdrawal services, plus intermediate levels of care). For more information, please contact M. Lindsey Smith, PhD, at [email protected]
    • …
    corecore