775 research outputs found
Polytopes of Minimum Positive Semidefinite Rank
The positive semidefinite (psd) rank of a polytope is the smallest for
which the cone of real symmetric psd matrices admits an affine
slice that projects onto the polytope. In this paper we show that the psd rank
of a polytope is at least the dimension of the polytope plus one, and we
characterize those polytopes whose psd rank equals this lower bound. We give
several classes of polytopes that achieve the minimum possible psd rank
including a complete characterization in dimensions two and three
Electron acceleration by a transient intense-laser-plasma electrode
Rapid strides in the technology of laser plasma-based acceleration of charged particles leading to high brightness, tunable, monochromatic energetic beams of electrons and ions has been driven by potential multidisciplinary applications in cancer therapy, isotope preparation, radiography and thermonuclear fusion. Hitherto laser plasma acceleration schemes were confined to large-scale facilities generating a few tens of terawatt to petawatt laser pulses at repetition rates of 10 Hz or less. However, the need to make viable systems using high-repetition-rate femtosecond lasers has impelled recent research into novel targetry [1,2]. Of contemporary importance is the generation of supra thermal electrons, beyond those predicted by the scaling relation, reflected in both theoretical and computational work [3,4]. In this work we present evidence of generation of relativistic electrons (temperature >200 keV, maximum energies >1 MeV) at intensities that are two orders of magnitude lower than the relativistic intensity threshold. The novel targets [6] are 15 micron sized crystals suspended as aerosols in a gas interacting with a kHz, few-mJ femtosecond laser focussed to intensities of 10 PW/cm2. A pre-pulse with 1-5% of the intensity of the main pulse, arriving 4 ns early, is critical for hot electron generation. In addition to this unprecedented energy enhancement, we also characterize the dependence of X-ray spectra on the background gas of the aerosol. Intriguingly, easier the gas is to ionise, greater is the number of hot electrons observed, while the electron temperature remains the same. 2-D Radiation hydrodynamics and Particle-in-cell (PIC) simulations explain both the experimentally observed electron emission and the role of the low-density plasma in yield enhancement. We observe a two-temperature electron spectrum with about 50 and 240 keV temperatures consistent with the measurements made in the experiments. The simulations show that the following features contribute to the high-energy electron emission. The pre-pulse generates a hemispherical plasma-profile that enhances the coupling of the laser light. Overdense plasma is generated about the hemispherical cavity on the particle due to the main pulse interaction. The gradient in the plasma density in and around the cavity serves as a reservoir of low energy electrons to be injected into the particle potential and enables the hot electron generation observed in the experiments. Higher energy electron emission is dominantly from the edges of the hemispherical cavitation. The increase in total X-ray yield observed in the experiments scales with the number of electrons generated in the low density neighborhood surrounding the particle. In a simple-man picture, the laser interacts with the particle and ejects electrons from the particle. The particle acquires a strong positive potential that can only be brought down by ion expansion that occurs over 10's of picoseconds. The particle with strong positive potential acts as an 'accelerating electrode' for the electrons ionized in the low-density gas neighborhood. These results assume importance in the context of applications such as fast fuel ignition [6] or in medical applications of laser plasmas [7] where high irradiance of energetic electrons is of consequence. 1. D. Gustas et al., Phys. Rev. Accel. Beams, 21, 013401 (2018). 2. S. Feister et al , Opt. Express, 25, 18736 (2017). 3. B. S. Paradkar, S. I. Krasheninnikov, and F. N. Beg, Physics of Plasmas, 19, 060703 (2012). 4. A. P. L. Robinson, A. V. Areev, and D. Neely, Phys. Rev. Lett., 111, 065002 (2013). 5. R. Gopal, et al., Review of Scientific Instruments, 88, 023301 (2017). 6. M. Tabak et al., Physics of Plasmas, 1, 1626 (1994). 7. A. Sjogren, M. Harbst, C.-G. Wahlstrom, S. Svanberg, and C. Olsson, Review of Scientific Instruments, 74, 2300 (2003)
Preconceptional antithyroid peroxidase antibodies, but not thyroid-stimulating hormone, are associated with decreased live birth rates in infertile women
OBJECTIVE: To study whether preconceptual thyroid-stimulating hormone (TSH) and antithyroid peroxidase (TPO) antibodies are associated with poor reproductive outcomes in infertile women.
DESIGN: Secondary analysis of data from two multicenter, randomized, controlled trials conducted by the Reproductive Medicine Network of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Multivariable logistic regression analyses were performed to assess the association between preconceptual TSH levels and anti-TPO antibodies.
SETTING: Not applicable.
PATIENT(S): Serum samples from 1,468 infertile women were utilized.
INTERVENTION(S): None.
MAIN OUTCOME MEASURE(S): Cumulative conception, clinical pregnancy, miscarriage, and live birth rates were calculated.
RESULT(S): Conception, clinical pregnancy, miscarriage, and live birth rates did not differ between patients with TSH ≥2.5 mIU/L vs. TSH < 2.5 mIU/L. Women with anti-TPO antibodies had similar conception rates (33.3% vs. 36.3%) but higher miscarriage rates (43.9% vs. 25.3%) and lower live birth rates (17.1% vs. 25.4%) than those without anti-TPO antibodies. Adjusted, multivariable logistic regression models confirmed elevated odds of miscarriage (odds ratio 2.17, 95% confidence interval 1.12-4.22) and lower odds of live birth (oddr ratio 0.58, 95% confidence interval 0.35-0.96) in patients with anti-TPO antibodies.
CONCLUSION(S): In infertile women, preconceptional TSH ≥2.5 mIU/L is not associated with adverse reproductive outcomes; however, anti-TPO antibodies are associated with increased risk of miscarriage and decreased probability of live birth.
CLINICAL TRIAL REGISTRATION NUMBER: PPCOS II NCT00719186; AMIGOS NCT01044862
Plan de negocios para la creaci?n de un call center de cobranzas enfocado en desarrollar una cultura organizacional que reduzca los altos ?ndices de rotaci?n maximizando los niveles de productividad
El presente trabajo tiene como objetivo crear una empresa de call center de cobranzas. A trav?s, de la investigaci?n te?rica y estudios cuantitativos se pudo validar la problem?tica de la rotaci?n y la cultura organizacional en los call center de cobranzas. As? tambi?n, a trav?s de estudios cualitativos como entrevistas, encuestas y focus group se pudo determinar o identificar los principales atributos y caracter?sticas que los clientes valoran al momento de contratar una empresa de call center. Se desarrollaron estrategias que pretende eliminar la brecha que existe entre lo que los clientes desean versus lo que el mercado ofrece. La estrategia de recursos humanos desarrolla una cultura organizacional de clan y mercado para retener al personal y elevar la productividad. La estrategia de marketing plantea un precio similar a la competencia, pero con un servicio diferenciado, por los altos niveles de productividad esperados. As? mismo, la estrategia operativa desarrollada permite identificar los procesos cr?ticos que deber?n ser monitoreados y auditados para evitar fallos que pudieran causar insatisfacci?n de los clientes. Con las estrategias definidas se eval?an los costos e ingresos mediante la evaluaci?n econ?mica que resulta con VAN positivo, que indica que el presente plan de negocios es viable
Evaluating the clinical and cost effectiveness of a behaviour change intervention for lowering cardiovascular disease risk for people with severe mental illnesses in primary care (PRIMROSE study):study protocol for a cluster randomised controlled trial
BACKGROUND: People with severe mental illnesses die up to 20 years earlier than the general population, with cardiovascular disease being the leading cause of death. National guidelines recommend that the physical care of people with severe mental illnesses should be the responsibility of primary care; however, little is known about effective interventions to lower cardiovascular disease risk in this population and setting. Following extensive peer review, funding was secured from the United Kingdom National Institute for Health Research (NIHR) to deliver the proposed study. The aim of the trial is to test the effectiveness of a behavioural intervention to lower cardiovascular disease risk in people with severe mental illnesses in United Kingdom General Practices. METHODS/DESIGN: The study is a cluster randomised controlled trial in 70 GP practices for people with severe mental illnesses, aged 30 to 75 years old, with elevated cardiovascular disease risk factors. The trial will compare the effectiveness of a behavioural intervention designed to lower cardiovascular disease risk and delivered by a practice nurse or healthcare assistant, with standard care offered in General Practice. A total of 350 people will be recruited and followed up at 6 and 12 months. The primary outcome is total cholesterol level at the 12-month follow-up and secondary outcomes include blood pressure, body mass index, waist circumference, smoking status, quality of life, adherence to treatments and services and behavioural measures for diet, physical activity and alcohol use. An economic evaluation will be carried out to determine the cost effectiveness of the intervention compared with standard care. DISCUSSION: The results of this pragmatic trial will provide evidence on the clinical and cost effectiveness of the intervention on lowering total cholesterol and addressing multiple cardiovascular disease risk factors in people with severe mental illnesses in GP Practices. TRIAL REGISTRATION: Current Controlled Trials ISRCTN13762819 . Date of Registration: 25 February 2013. Date and Version Number: 27 August 2014 Version 5
High Performance In Vivo Near-IR (>1 {\mu}m) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes
Short single-walled carbon nanotubes (SWNTs) functionalized by PEGylated
phospholipids are biologically non-toxic and long-circulating nanomaterials
with intrinsic near infrared photoluminescence (NIR PL), characteristic Raman
spectra, and strong optical absorbance in the near infrared (NIR). This work
demonstrates the first dual application of intravenously injected SWNTs as
photoluminescent agents for in vivo tumor imaging in the 1.0-1.4 {\mu}m
emission region and as NIR absorbers and heaters at 808 nm for photothermal
tumor elimination at the lowest injected dose (70 {\mu}g of SWNT/mouse,
equivalent to 3.6 mg/kg) and laser irradiation power (0.6 W/cm2) reported to
date. Ex vivo resonance Raman imaging revealed the SWNT distribution within
tumors at a high spatial resolution. Complete tumor elimination was achieved
for large numbers of photothermally treated mice without any toxic side effects
after more than six months post-treatment. Further, side-by-side experiments
were carried out to compare the performance of SWNTs and gold nanorods (AuNRs)
at an injected dose of 700 {\mu}g of AuNR/mouse (equivalent to 35 mg/kg) in NIR
photothermal ablation of tumors in vivo. Highly effective tumor elimination
with SWNTs was achieved at 10 times lower injected doses and lower irradiation
powers than for AuNRs. These results suggest there are significant benefits of
utilizing the intrinsic properties of biocompatible SWNTs for combined cancer
imaging and therapy.Comment: Nanoresearch, in pres
The host metabolite D-serine contributes to bacterial niche specificity through gene selection
Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity
Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups
The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a restricted set of “universal” classes for these patterns. While universality is interesting, it is often the fine details of animal interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood models. Taken together our results both inform the design of experiments on animal interactions and suggest how these data should be best analysed
Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas
HighlightsDenitrifying woodchip bioreactors treat nitrate-N in a variety of applications and geographies.This review focuses on subsurface drainage bioreactors and bed-style designs (including in-ditch).Monitoring and reporting recommendations are provided to advance bioreactor science and engineering. Denitrifying bioreactors enhance the natural process of denitrification in a practical way to treat nitrate-nitrogen (N) in a variety of N-laden water matrices. The design and construction of bioreactors for treatment of subsurface drainage in the U.S. is guided by USDA-NRCS Conservation Practice Standard 605. This review consolidates the state of the science for denitrifying bioreactors using case studies from across the globe with an emphasis on full-size bioreactor nitrate-N removal and cost-effectiveness. The focus is on bed-style bioreactors (including in-ditch modifications), although there is mention of denitrifying walls, which broaden the applicability of bioreactor technology in some areas. Subsurface drainage denitrifying bioreactors have been assessed as removing 20% to 40% of annual nitrate-N loss in the Midwest, and an evaluation across the peer-reviewed literature published over the past three years showed that bioreactors around the world have been generally consistent with that (N load reduction median: 46%; mean ±SD: 40% ±26%; n = 15). Reported N removal rates were on the order of 5.1 g N m-3 d-1 (median; mean ±SD: 7.2 ±9.6 g N m-3 d-1; n = 27). Subsurface drainage bioreactor installation costs have ranged from less than 27,000, with estimated cost efficiencies ranging from less than 20 kg-1 N year-1 (although they can be as high as $48 kg-1 N year-1). A suggested monitoring setup is described primarily for the context of conservation practitioners and watershed groups for assessing annual nitrate-N load removal performance of subsurface drainage denitrifying bioreactors. Recommended minimum reporting measures for assessing and comparing annual N removal performance include: bioreactor dimensions and installation date; fill media size, porosity, and type; nitrate-N concentrations and water temperatures; bioreactor flow treatment details; basic drainage system and bioreactor design characteristics; and N removal rate and efficiency
- …