20 research outputs found

    ZT Optimization: An Application Focus

    No full text
    Significant research has been performed on the challenge of improving thermoelectric materials, with maximum peak figure of merit, ZT, the most common target. We use an approximate thermoelectric material model, matched to real materials, to demonstrate that when an application is known, average ZT is a significantly better optimization target. We quantify this difference with some examples, with one scenario showing that changing the doping to increase peak ZT by 19% can lead to a performance drop of 16%. The importance of average ZT means that the temperature at which the ZT peak occurs should be given similar weight to the value of the peak. An ideal material for an application operates across the maximum peak ZT, otherwise maximum performance occurs when the peak value is reduced in order to improve the peak position

    ZT Optimization: An Application Focus

    No full text

    Solid-Liquid Interdiffusion (SLID) Bonding of p-Type Skutterudite Thermoelectric Material Using Al-Ni Interlayers

    Get PDF
    Over the past few years, significant progress towards implementation of environmentally sustainable and cost-effective thermoelectric power generation has been made. However, the reliability and high-temperature stability challenges of incorporating thermoelectric materials into modules still represent a key bottleneck. Here, we demonstrate an implementation of the Solid-Liquid Interdiffusion technique used for bonding Mmy(Fe,Co)4Sb12 p-type thermoelectric material to metallic interconnect using a novel aluminium⁻nickel multi-layered system. It was found that the diffusion reaction-controlled process leads to the formation of two distinct intermetallic compounds (IMCs), Al3Ni and Al3Ni2, with a theoretical melting point higher than the initial bonding temperature. Different manufacturing parameters have also been investigated and their influence on electrical, mechanical and microstructural features of bonded components are reported here. The resulting electrical contact resistances and apparent shear strengths for components with residual aluminium were measured to be (2.8 ± 0.4) × 10−5 Ω∙cm2 and 5.1 ± 0.5 MPa and with aluminium completely transformed into Al3Ni and Al3Ni2 IMCs were (4.8 ± 0.3) × 10−5 Ω∙cm2 and 4.5 ± 0.5 MPa respectively. The behaviour and microstructural changes in the joining material have been evaluated through isothermal annealing at hot-leg working temperature to investigate the stability and evolution of the contact

    Automotive power harvesting/thermoelectric applications

    No full text
    Legislative CO2 emission penalties and the desire to increase overall efficiency using the least expensive technology for automotive vehicles has led manufacturers to research and develop thermoelectric generators (TEGs). TEGs will play an important role in achieving a large-scale, sustainable energy solution. However, the conflicting material characteristics needed for TEGs pose a formidable challenge. The suitability and opportunities for thermoelectric devices in automotive applications are discussed, with particular emphasis on systems for electrical energy generation from exhaust gases. The significant challenges for integrating thermoelectric devices into a device for wide scale automotive deployment are outlined, including the balancing of the many different requirements for the system such as thermal management, thermoelectric materials, design and packaging constraints, etc. Some of the failure modes of thermoelectric modules in such a system are also reviewed

    Fast synthesis of n-type half-heusler TiNiSn thermoelectric material

    No full text
    The n-type half-Heusler TiNiSn is very promising for thermoelectric applications in the medium temperature range. However, the synthesis of TiNiSn often involves long annealing times (up to several weeks) to obtain a single phase, which is a major barrier to scaling-up. In this work, TiNiSn was synthesized by a combination of arc-melting, ball-milling and spark plasma sintering. The obtained samples with diameters up to 30 mm had high-purity, high-density and fine-grains. Without the need for an annealing step, the total synthesis time was significantly shortened. Addition of Cu was used to optimize the thermoelectric properties of TiNiSn, and a maximum figure of merit of 0.6 was achieved at 773 K. The fast and scalable synthesis of TiNiSn with good thermoelectric performance presented in this work opens up the possibility of industrial scaling-up
    corecore