201 research outputs found

    Watermark

    Get PDF
    Richard Tipping’s Watermark, commissioned in 2000 for the Powerhouse Centre for the Live Arts in Brisbane. The location is at New Farm, a part of the sites of massive floodings of the Brisbane River in previous years. Watermark is made of plate steel which is powder-coated, with a length of 15 metres and height of 1.8 and depth of 1.5. From the statement on the plaque: Watermark (2000) by Richard Tipping This sculpture is meant to evoke the power of the Brisbane River sweeping around this curve at New Farm, triggering memories of the massive floods of 1893 and 1974, and anxieties about the next. The title Watermark means both a mark showing the height to which water has risen, and a design impressed into paper which is visible when held to the light, guaranteeing authenticity

    Theoretical studies of spectroscopic problems of importance for atmospheric radiation measurements

    Get PDF
    Many of the instruments used to deduce the physical parameters of the Earth's atmosphere necessary for climate studies or for pollution monitoring (for instance, temperature versus pressure or number densities of trace molecules) rely on the existence of accurate spectroscopic data and an understanding of the physical processes responsible for the absorption or emission of radiation. During the summer, research was either continued or begun on three distinct problems: (1) an improved theoretical framework for the calculation of the far-wing absorption of allowed spectral lines; (2) a refinement of the calculation of the collision-induced fundamental spectrum of N2; and (3) an investigation of possible line-mixing effects in the fundamental spectrum of CH4. Progress in these three areas is summarized below. During the past few years, we have developed a theoretical framework for the calculation of the absorption of radiation by the far wings of spectral lines. Such absorption due to water vapor plays a crucial role in the greenhouse effect as well as limiting the retrieval of temperature profiles from satellite data. Several improvements in the theory have been made and the results are being prepared for publication. Last year we published results for the theoretical calculation of the absorption of radiation due to the dipoles induced during binary collisions of N2 molecules using independently measured molecular parameters; the results were in reasonable agreement with experimental data. However, recent measurements have revealed new fine structure that has been attributed to line-mixing effects. We do not think that this is correct, rather that the structure results from short-range anisotropic dipoles. We are in the process of including this refinement in our theoretical calculation in order to compare with the new experimental data. Subtle changes in the spectra of CH4 measured by researchers at Langley have also been attributed to line-mixing effects. By analyzing the same spectral lines we have attempted to verify or rule out possible line-mixing mechanisms. Due to the complexity and richness of the spectrum of this highly symmetric molecule, as well as the small magnitude of the effects, a detailed first-principle calculation of the mixing is a difficult problem. Before such a program is undertaken it is important to glean as much information as possible concerning the possible mechanisms by a systematic analysis of the existing data

    Theory of the water vapor continuum and validations

    Get PDF
    A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of the vibration-rotational bands has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations were made assuming an interaction potential consisting of an isotropic Lennard-Jones part with two parameters that are consistent with values obtained from other data, and the leading long-range anisotropic part, together with the measured line strengths and transition frequencies. The results, obtained without the introduction of adjustable parameters, compare well with the existing laboratory data, both in magnitude and in temperature dependence. This leads us to the conclusion that the water continuum can be explained in terms of far-wing absorption. Current work in progress to extend the theory and to validate the theoretically calculated continuum will be discussed briefly

    Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Get PDF
    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications

    An improved quasistatic line-shape theory: The effects of molecular motion on the line wings

    Get PDF
    A theory is presented for the modification of the line-shape functions and absorption coefficient due to the breakdown of the quasistatic approximation. This breakdown arises from the effects of molecular motion and increases the absorption in the near wings. Numerical calculations for the high-frequency wing of the nu(sub 3) band of CO2 broadened by Ar are reported and it is shown that these effects are significant near the bandhead. The importance of such corrections in other spectral regions and for other systems is discussed briefly

    Improved automation of dissolved organic carbon sampling for organic-rich surface waters

    Get PDF
    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyserTM for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L-1, which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy > 95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy > 90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands

    Fibrin independent proinflammatory effects of tissuefactor in experimental crescentic glomerulonephritis

    Get PDF
    Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis.BackgroundTissue factor initiated glomerular fibrin deposition is an important mediator of injury in crescentic glomerulonephritis. Recent data have suggested noncoagulant roles for tissue factor in inflammation.MethodsTo test the hypothesis that in addition to its effects in initiating coagulation, tissue factor has proinflammatory effects in glomerulonephritis, rabbits given crescentic anti-glomerular basement membrane (GBM) antibody–induced glomerulonephritis were defibrinogenated with ancrod. One group of defibrinogenated rabbits was also given anti-tissue factor antibodies. Comparisons were made between these groups, as well as a third group that was neither defibrinogenated with ancrod nor given anti-tissue factor antibodies.ResultsDefibrinogenation alone abolished glomerular fibrin deposition, reduced crescent formation, and limited renal impairment (ancrod-treated, serum creatinine 274 ± 37 μmol/L; untreated 415 ± 51 μmol/L; P < 0.01). Tissue factor inhibition in defibrinogenated rabbits resulted in further protection of renal function (creatinine 140 ± 19 μmol/L, P < 0.01) and reduced proteinuria (0.4 ± 0.2g/day, untreated 2.6 ± 0.4 g/day, P <0.01), which was significantly increased by defibrinogenation alone (ancrod-treated, 5.6 ± 1.2 g/day). Anti-tissue factor antibodies (but not defibrinogenation alone) attenuated glomerular T-cell and macrophage recruitment, and major histocompatibility complex (MHC) class II expression.ConclusionThese results demonstrate important proinflammatory effects of tissue factor in crescentic glomerulonephritis that are fibrin independent and provide in vivo evidence for tissue factor's proinflammatory effects on MHC class II expression and leukocyte accumulation

    Interleukin-4 deficiency enhances Th1 responses and crescentic glomerulonephritis in mice

    Get PDF
    Interleukin-4 deficiency enhances Th1 responses and crescentic glomerulonephritis in mice. Evidence suggests that crescentic glomerulonephritis (GN) is due to T helper cell 1 (Th1) directed delayed-type hypersensitivity (DTH)-like injury. As endogenous interleukin (IL)-4, (the pivotal cytokine in Th2 responses) may attenuate Th1 responses in this disease, we compared the development of crescentic GN, induced by a planted antigen, in mice genetically deficient in IL-4 (IL-4−/−) with disease in normal mice (IL-4+/+). IL-4−/− mice developed more severe GN with increased renal impairment (CCr 35 ± 7 μl/min vs. 133 ± 14 μl/min, P < 0.002) and crescent formation (55.7 ± 8.4% vs. 4.9 ± 1.2%, P < 0.002). This was associated with increased glomerular fibrin deposition, glomerular CD4+ T cell infiltration and macrophage recruitment. Systemically, IL-4−/− mice showed an increased antigen specific Th1 response indicated by increased skin DTH, and increased IgG3 and IgG2b. Decreased IgG1 levels indicated a reduced Th2 response. These results demonstrate a protective role for endogenous IL-4 in crescentic GN. They show that IL-4 deficiency promotes crescentic glomerular injury and amplifies local and systemic Th1 responses. They support the hypothesis that crescent formation results from Th1 immune responses to antigens in the glomerulus

    Modelling forest landscape dynamics in Glen Affric, northern Scotland

    Get PDF
    Consideration of forest management at the landscape scale is essential if commitments to the conservation of biodiversity are to be upheld. The ecosystem management approach, developed largely in North America, has made use of various landscape modelling tools to assist in planning for biodiversity maintenance and ecological restoration. The roles of habitat suitability models, metapopulation models, spatially explicit population models (SEPMs) and forest landscape dynamics models (FLDMs) in the planning process are discussed and a review of forest dynamics models is presented. Potential is identified for developing landscape models in the UK for both landscape restoration projects and semi-natural woodland management. Glen Affric, in northern Scotland contains a large area of native pine and birch woodland and is the subject of a long-term restoration project. A new model, GALDR (Glen Affric Landscape Dynamics Reconstruction) is introduced and is believed to be the first FLDM developed for British woodland. The theory behind the model is described in detail and preliminary results and sensitivity analyses are presented. Furthermore, GALAM (Glen Affric Lichen Abundance Model), a new SEPM for the rare epiphytic lichen Bryoria furcellata is also described. Results of simulations from the linked GALDR and GALAM models are presented which shed light on the role of landscape heterogeneity in determining the dynamics of lichen habitats and populations. It is concluded that, whilst much work will be required to develop a management-oriented decision support system from the GALDR model, the modelling process may aid researchers in the identification of knowledge gaps in ecological theory relevant to management and restoration.EThOS - Electronic Theses Online ServiceGreat Britain. Forestry CommissionGBUnited Kingdo
    • …
    corecore