22 research outputs found

    Investigation of the role of thermal boundary layer processes in initiating convection under the NASA SPACE Field Program

    Get PDF
    The current NWS ground based network is not sufficient to capture the dynamic or thermodynamic structure leading to the initiation and organization of air mass moist convective events. Under this investigation we intend to use boundary layer mesoscale models (McNider and Pielke, 1981) to examine the dynamic triggering of convection due to topography and surface thermal contrasts. VAS and MAN's estimates of moisture will be coupled with the dynamic solution to provide an estimate of the total convective potential. Visible GOES images will be used to specify incoming insolation which may lead to surface thermal contrasts and JR skin temperatures will be used to estimate surface moisture (via the surface thermal inertia) (Weizel and Chang, 1988) which can also induce surface thermal contrasts. We will use the SPACE-COHMEX data base to evaluate the ability of the joint mesoscale model satellite products to show skill in predicting the development of air mass convection. We will develop images of model vertical velocity and satellite thermodynamic measures to derive images of predicted convective potential. We will then after suitable geographic registration carry out a pixel by pixel correlation between the model/satellite convective potential and the 'truth' which are the visible images. During the first half of the first year of this investigation we have concentrated on two aspects of the project. The first has been in generating vertical velocity fields from the model for COHMEX case days. We have taken June 19 as the first case and have run the mesoscale model at several different grid resolutions. We are currently developing the composite model/satellite convective image. The second aspect has been the attempted calibration of the surface energy budget to provide the proper horizontal thermal contrasts for convective initiation. We have made extensive progress on this aspect using the FIFE data as a test data set. The calibration technique looks very promising

    Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    Get PDF
    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by, almost 50% and 35%, respectively, by analyzing and adjusting (if necessary) for errors due to (1) missing data, (2) residual harmonics of the annual cycle unique to particular satellites, (3) lack of filtering, and (4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C, or about 0.03 C per decade cooler than previously calculated

    Study of atmospheric dynamics

    Get PDF
    In order to better understand the dynamics of the global atmosphere, a data set of precision temperature measurements was developed using the NASA built Microwave Sounding Unit. Modeling research was carried out to validate global model outputs using various satellite data. Idealized flows in a rotating annulus were studied and applied to the general circulation of the atmosphere. Dynamic stratospheric ozone fluctuations were investigated. An extensive bibliography and several reprints are appended

    Assimilation of Satellite Data in Regional Air Quality Models

    Get PDF
    In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry

    Unresolved issues with the assessment of multidecadal global land surface temperature trends

    Get PDF
    This paper documents various unresolved issues in using surface temperature trends as a metric for assessing global and regional climate change. A series of examples ranging from errors caused by temperature measurements at a monitoring station to the undocumented biases in the regionally and globally averaged time series are provided. The issues are poorly understood or documented and relate to micrometeorological impacts due to warm bias in nighttime minimum temperatures, poor siting of the instrumentation, effect of winds as well as surface atmospheric water vapor content on temperature trends, the quantification of uncertainties in the homogenization of surface temperature data, and the influence of land use/land cover (LULC) change on surface temperature trends. Because of the issues presented in this paper related to the analysis of multidecadal surface temperature we recommend that greater, more complete documentation and quantification of these issues be required for all observation stations that are intended to be used in such assessments. This is necessary for confidence in the actual observations of surface temperature variability and long-term trends

    Activities relating to understanding the initiation, organization and structure of moist convection in the Southeast environment

    Get PDF
    In the spring and summer of 1986, NASA/Marshall Space Flight Center (MSFC) will sponsor the Satellite Precipitation And Cloud Experiment (SPACE) to be conducted in the Central Tennessee, Northern Alabama, and Northeastern Mississippi area. The field program will incorporate high altitude flight experiments associated with meteorological remote sensor development for future space flight, and an investigation of precipitation processes associated with mesoscale and small convective systems. In addition to SPACE, the MIcroburst and Severe Thunderstorm (MIST) program, sponsored by the National Science Foundation (NSF), and the FAA-Lincoln Laboratory Operational Weather Study (FLOWS), sponsored by the Federal Aviation Administration (FAA), will take place concurrently within the SPACE experiment area. All three programs (under the joint acronym COHMEX (COoperative Huntsville Meteorological EXperiment)) will provide a data base for detailed analysis of mesoscale convective systems while providing ground truth comparisons for remote sensor evaluation. The purpose of this document is to outline the experiment design criteria for SPACE, and describe the special observing facilities and data sets that will be available under the COHMEX joint program. In addition to the planning of SPACE-COHMEX, this document covers three other parts of the program. The field program observations' main activity was the operation of an upper air rawinsonde network to provide ground truth for aircraft and spacecraft observations. Another part of the COHMEX program involved using boundary layer mesoscale models to study and simulate the initiation and organization of moist convection due to mesoscale thermal and mechanical circulations. The last part of the program was the collection, archival and distribution of the resulting COHMEX-SPACE data sets

    A procedure to estimate worst-case air quality in complex terrain. Environ

    No full text
    Using a straightforward synoptic climatological analysis scheme, it is shown that the potential for an area to experience air quality degradation due to local sources is highest under polar subtropical highs. With respect to polar highs, the problem is most severe when the sun angle is low and snow covers the ground, and the polar high persists for a long period of time. A simple algorithm is introduced which is designed to estimate worst-case impact in a trapping valley. The potential for the accumulation of air pollution in such valleys due to the persistence of a polar high in a region, is ignored in current regulatory air quality assessments. Trapping valleys and synoptic flow stagnation often occur in wilderness areas. Refined air quality assessments are shown to be possible using a mesoscale meteorological model and a pollution dispersion model. These tools permit quantitative assessments of pollution build-up from local sources as a result of the recirculation of the local air. This tool, along with the synoptic climatological classification scheme, also permits an evaluation of the fractional contribution of long range versus local sources in the air quality degradation in a region. Areas near the center of a polar or subtropical surface high pressure system, for instance, appear to be dominated by local sources, if they exist, whereas in the vicinity of extratropical cyclones, long-range transport is usually much more important

    Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    No full text
    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite鈥恟etrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8聽h ozone concentration by up to 5.3聽ppbV over the Dallas鈥怓ort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6聽ppbV decrease near DFW and 0.3聽ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES鈥恉erived cloud fields in WRF improved CAMx model performance for ground鈥恖evel ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite鈥恉erived formaldehyde columns and aircraft鈥恛bserved vertical profiles of isoprene
    corecore