96 research outputs found

    Cancer mortality in IBM Endicott plant workers, 1969–2001: an update on a NY production plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to concerns expressed by workers at a public meeting, we analyzed the mortality experience of workers who were employed at the IBM plant in Endicott, New York and died between 1969–2001. An epidemiologic feasibility assessment indicated potential worker exposure to several known and suspected carcinogens at this plant.</p> <p>Methods</p> <p>We used the mortality and work history files produced under a court order and used in a previous mortality analysis. Using publicly available data for the state of New York as a standard of comparison, we conducted proportional cancer mortality (PCMR) analysis.</p> <p>Results</p> <p>The results showed significantly increased mortality due to melanoma (PCMR = 367; 95% CI: 119, 856) and lymphoma (PCMR = 220; 95% CI: 101, 419) in males and modestly increased mortality due to kidney cancer (PCMR = 165; 95% CI: 45, 421) and brain cancer (PCMR = 190; 95% CI: 52, 485) in males and breast cancer (PCMR = 126; 95% CI: 34, 321) in females.</p> <p>Conclusion</p> <p>These results are similar to results from a previous IBM mortality study and support the need for a full cohort mortality analysis such as the one being planned by the National Institute for Occupational Safety and Health.</p

    Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review)

    Get PDF
    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to widescale adoption of CGTs remains challenging, such that the emergence of a “blockbuster” therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches

    Mortality among US employees of a large computer manufacturing company: 1969–2001

    Get PDF
    BACKGROUND: Previous studies suggested increased cancer incidence and mortality in workers exposed to solvents and other chemicals in computer manufacturing jobs. Most previous studies were of small cohorts and findings were inconsistent. A lawsuit involving a large U.S. company produced a data file for analysis. This study sought to elucidate patterns of mortality in workers who were engaged manufacturing computers and related electronic components in the largest database available to date. METHODS: A proportional mortality and proportional cancer mortality analysis of deaths in eligible workers between 1969 and 2001 was carried out, with U.S. population mortality data as the standard for comparison. Mortality and work history data was from corporate mortality and work history files produced during litigation and standard U.S. and state mortality files. The study base comprised 31,941 decedents who died between 1969 and 2001, who had worked for at least five years and whose death information was collected in the corporate mortality file. Proportional mortality ratios (PMRs) and Proportional Cancer Mortality Ratios (PCMRs) and their 95% confidence intervals were computed for 66 causes of death in males and females. RESULTS: PMRs for all cancers combined were elevated in males (PMR = 107; 95% CI = 105–109) and females (PMR = 115; 95% CI = 110–119); several specific cancers and other causes of death were also significantly elevated in both males and females. There were reduced deaths due to non-malignant respiratory disease in males and females and heart disease in females; several specific cancers and other causes of death were significantly reduced in both males and females. Proportional cancer mortality ratios (PCMRs) for brain and central nervous system cancer were elevated (PCMR = 166; 95% CI = 129–213), kidney cancer (PCMR = 162; 95% CI = 124–212), melanoma of skin (PCMR = 179; 95% CI = 131–244) and pancreatic cancer (PCMR = 126; 95% CI = 101–157) were significantly elevated in male manufacturing workers. Kidney cancer (PCMR = 212; 95% CI = 116–387) and cancer of all lymphatic and hematopoietic tissue (PCMR = 162; 95% CI = 121–218) were significantly elevated in female manufacturing workers. CONCLUSION: Mortality was elevated due to specific cancers and among workers more likely to be exposed to solvents and other chemical exposures in manufacturing operations. Due to lack of individual exposure information, no conclusions are made about associations with any particular agent

    Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.

    Get PDF
    Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E) lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease

    Cognitive Information Processing

    Get PDF
    Contains research objectives and summary of research on fourteen research projects and reports on four research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346)National Science Foundation (Grant EPP74-12653)National Science Foundation (Grant ENG74-24344)National Institutes of Health (Grant 2 PO1 GM19428-04)Swiss National Funds for Scientific ResearchM.I.T. Health Sciences Fund (Grant 76-11)National Institutes of Health (Grant F03 GM58698)National Institutes of Health (Biomedical Sciences Support Grant)Associated Press (Grant

    Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder

    Get PDF
    Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    OBJECTIVE: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. METHODS: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. RESULTS: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values \u3c5×10 CONCLUSIONS: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    Objective: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and crossvalidated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS metaanalysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. Methods: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. Results: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values &lt;5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. Conclusions: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.</p
    corecore