2,466 research outputs found

    Innovation processes and industrial districts

    Get PDF
    In this survey, we examine the operations of innovation processes within industrial districts by exploring the ways in which differentiation, specialization, and integration affect the generation, diffusion, and use of new knowledge in such districts. We begin with an analysis of the importance of the division of labour and then investigate the effects of social embeddedness on innovation. We also consider the effect of forms of organization within industrial districts at various stages of product and process life, and we examine the negative aspects of embeddedness for innovation. We conclude with a discussion of the possible consequences of new information and communications technologies on innovation in industrial districts

    Effects of El Nino on Local Hydrography and Growth of the Giant Kelp, Macrocystis Pyrifera, at Santa Catalina Island, California

    Get PDF
    Deepened isotherms associated with El NiĂąo resulted in severe nutrient limitation and very low kelp productivity during the last half of 1983. Frond growth rates were so low that terminal blades formed before reaching the surface, eliminating the canopy. Frond initiation rates were also extremely low, resulting in significant reductions in mean plant size. Plants growing above 10m were more severely affected than plants at 20m. Nutrient pulses associated with internal waves are thus critical for survival of Macrocystis pyrifera in nutritionally marginal habitats in Southern California

    Is Selectively Harvested Forest an Ecological Trap for Olive-Sided Flycatchers?

    Get PDF
    Disturbance-dependent species are assumed to benefit from forestry practices that mimic the appearance of postdisturbance landscapes. However, human activities that closely mimic the appearance but not the fundamental quality of natural habitats could attract animals to settle whether or not these habitats are suitable for their survival or reproduction. We examined habitat selection behavior and nest success of Olive-sided Flycatchers (Contopus cooperi) in a naturally occurring burned forest and an anthropogenically created habitat type-selectively harvested forest. Olive-sided Flycatcher density and nestling provisioning rates were greater in the selectively harvested landscape, whereas estimated nest success in selectively harvested forest was roughly half that found in naturally burned forest. Reduced nest success was probably a result of the relatively high abundance of nest predators found in the artificially disturbed forest. These results are consistent with the hypothesis that selectively harvested forest can act as an ecological trap by attracting Olive-sided Flycatchers to a relatively poor-quality habitat type. This highlights the importance of considering animal behavior in biodiversity conservation

    A Framework for Understanding Ecological Traps and an Evaluation of Existing Evidence

    Get PDF
    When an animal settles preferentially in a habitat within which it does poorly relative to other available habitats, it is said to have been caught in an “ecological trap.” Although the theoretical possibility that animals may be so trapped is widely recognized, the absence of a clear mechanistic understanding of what constitutes a trap means that much of the literature cited as support for the idea may be weak, at best. Here, we develop a conceptual model to explain how an ecological trap might work, outline the specific criteria that are necessary for demonstrating the existence of an ecological trap, and provide tools for researchers to use in detecting ecological traps. We then review the existing literature and summarize the state of empirical evidence for the existence of traps. Our conceptual model suggests that there are two basic kinds of ecological traps and three mechanisms by which traps may be created. To this point in time, there are still only a few solid empirical examples of ecological traps in the published literature (although those few examples suggest that both types of traps and all three of the predicted mechanisms do exist in nature). Therefore, ecological traps are either rare in nature, are difficult to detect, or both. An improved library of empirical studies will be essential if we are to develop a more synthetic understanding of the mechanisms that can trigger maladaptive behavior in general and the specific conditions under which ecological traps might occur

    The impact of plasticizer and degree of hydrolysis on free volume of poly (vinyl alcohol) films

    Get PDF
    The effect of plasticizer species and the degree of hydrolysis (DH) on the free volume properties of poly(vinyl alcohol) (PVA) were studied using positron annihilation lifetime spectroscopy. Both glycerol and propylene glycol caused an increase in the free volume cavity radius, although exhibited distinct plasticization behavior, with glycerol capable of occupying existing free volume cavities in the PVA to some extent. The influence of water, normally present in PVA film under atmospheric conditions, was also isolated. Water added significantly to the measured free volume cavity radius in both plasticized and pure PVA matrices. Differences in plasticization behavior can be attributed to the functionality of each plasticizing additive and its hydrogen bonding capability. The increase in cavity radii upon plasticizer loading shows a qualitative link between the free volume of voids and the corresponding reduction in Tg and crystallinity. Cavity radius decreases with increasing DH, due to PVA network tightening in the absence of acetate groups. This corresponds well with the higher Tg observed in the resin with the higher DH. DH was also shown to impact the plasticization of PVA with glycerol, indicating that the larger cavities—created by the weaker hydrogen bonding acetate groups—are capable of accommodating glycerol molecules with negligible effect on the cavity dimensions

    No evidence for distinct types in the evolution of SARS-CoV-2

    Get PDF
    A recent study by Tang et al. claimed that two major types of severe acute respiratory syndrome-coronavirus-2 (CoV-2) had evolved in the ongoing CoV disease-2019 pandemic and that one of these types was more ‘aggressive’ than the other. Given the repercussions of these claims and the intense media coverage of these types of articles, we have examined in detail the data presented by Tang et al., and show that the major conclusions of that paper cannot be substantiated. Using examples from other viral outbreaks, we discuss the difficulty in demonstrating the existence or nature of a functional effect of a viral mutation, and we advise against overinterpretation of genomic data during the pandemic

    A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media

    Get PDF
    This paper describes the derivation of a new equation that can be used to model the permeability behavior of a fractured, sorptive-elastic media, such as coal, under variable stress conditions commonly used during measurement of permeability data in the laboratory. The model is derived for cubic geometry under biaxial or hydrostatic confining pressures. The model is also designed to handle changes in permeability caused by adsorption and desorption of gases from the matrix blocks. The model equations can be used to calculate permeability changes caused by the production of methane from coal as well as the injection of gases, such as carbon dioxide, for sequestration in coal. Sensitivity analysis of the model found that each of the input variables can have a significant impact on the outcome of the permeability forecast as a function of changing pore pressure; thus, accurate input data are essential. The permeability model can also be used as a tool to determine input parameters for field simulations by curve-fitting laboratory-generated permeability data. The new model is compared to two other widely used coal permeability models using a hypothetical coal with average properties

    Characterization of Kupffer cells in livers of developing mice

    Get PDF
    Abstract Background Kupffer cells are well known macrophages of the liver, however, the developmental characteristics of Kupffer cells in mice are not well understood. To clarify this matter, the characteristics of Kupffer macrophages in normal developing mouse liver were studied using light microscopy and immunocytochemistry. Methods Sections of liver tissue from early postnatal mice were prepared using immunocytochemical techniques. The Kupffer cells were identified by their immunoreactivity to the F4/80 antibody, whereas endothelial cells were labelled with the CD-34 antibody. In addition, Kupffer cells and endothelial cells were labelled by systemically injected fluorescently labelled latex microspheres. Tissue slices were examined by fluorescence microscopy. Results Intravenous or intraperitonal injections of microspheres yielded similar patterns of liver cell labelling. The F4/80 positive Kupffer cells were labelled with both large (0.2 Îźm) and small (0.02 Îźm) diameter microspheres, while endothelial cells were labelled only with the smaller diameter microspheres. Microsphere labelling of Kupffer cells appeared stable for at least 6 weeks. Cells immunoreactive for F4/80 were identified as early as postnatal day 0, and these cells also displayed uptake of microspheres. Numbers of F4/80 Kupffer cells, relative to numbers of albumin positive hepatocytes, did not show a significant trend over the first 2 postnatal weeks. Conclusions Kupffer cells of the developing mouse liver appear quite similar to those of other mammalian species, confirming that the mouse presents a useful animal model for studies of liver macrophage developmental structure and function
    • …
    corecore