1,263 research outputs found

    The Information Content of the 1999 Announcement of Funds from Operations (FFO) Changes for Real Estate Investment Trusts

    Get PDF
    This study examines the market response to the 1999 announcement of a change in accounting for Funds from Operations (FFO) for Real Estate Investment Trusts (REITs). This change provides an increase in transparency in the accounting statements of REITs regarding the calculation of FFO. An analysis of this announcement finds that shareholder wealth increases but the significance of that increase is questionable. Additionally, an analysis of the adverse selection component of the bid-ask spread finds weak evidence to support the conjecture that the amount of information asymmetry in REIT prices declines after the announcement of the FFO accounting change.

    If We Could Choose The Way We Pay: The Impact Of Decision Complexity On Tax Scheme Preference

    Get PDF
    A continuing debate exists about how the complex U.S. tax code has resulted in counter-productive business decisions. Our study examines how tax policy impacts taxpayer decision-making. We present a model addressing factors impacting taxpayer decision-making and test our resulting hypotheses using an experimental design drawn from industrial and organizational psychology. We find that the context of the taxpayer's personal situation significantly affects the decision to favor changes in tax policy. Consistent with our hypotheses, we find that taxpayers having a more complex tax situation will tend to support a tax simplification proposal less than those with simpler tax situations. Our study provides unique evidence that taxpayers having more complex tax situations feel more in control of their decisions under the existing tax structure than those having simpler tax situations. Implications for decision-making researchers and tax policymakers are offered

    A Study of How Underperforming Firms Follow Industry Leaders When Adopting ERP Systems and the Economic Effects of Their Adoption Decisions

    Get PDF
    Researchers have proposed but not tested that early-stage adopters of ERP systems tend to be higher-performing firms that adopt as a means of gaining or maintaining a competitive advantage. In contrast, they have proposed that late-stage adopters are underperforming firms that experience institutional pressures and make adoption decisions partly in response to those pressures and to try to improve performance and catch-up to industry leaders. In this study, we examine the relationship between firm performance and ERP adoption. We found that late-stage adopters tend to have lower financial performance relative to the overall market in the years leading up to adoption decisions as compared to early-stage adopters that tended to outperform the market in years leading up to adoption decisions. This finding demonstrates the relationship between firm performance and ERP adoption. We also found that, post-adoption, the relative performance of late-stage adopters tends to improve more than early-stage adopters. This finding suggests that following the actions of industry leaders and adopting ERP systems can have economic benefits for underperforming firms

    Elementary Survey Sampling -6/E.

    Get PDF

    Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment

    Get PDF
    BACKGROUND: Extra-cellular shear force is an important environmental parameter that is significant both medically and in the space environment. Escherichia coli cells grown in a low-shear modeled microgravity (LSMMG) environment produced in a high aspect rotating vessel (HARV) were subjected to transcriptional and physiological analysis. RESULTS: Aerobic LSMMG cultures were grown in rich (LB) and minimal (MOPS + glucose) medium with a normal gravity vector HARV control. Reproducible changes in transcription were seen, but no specific LSMMG responsive genes were identified. Instead, absence of shear and a randomized gravity vector appears to cause local extra-cellular environmental changes, which elicit reproducible cellular responses. In minimal media, the majority of the significantly up- or down-regulated genes of known function were associated with the cell envelope. In rich medium, most LSMMG down-regulated genes were involved in translation. No observable changes in post-culture stress responses and antibiotic sensitivity were seen in cells immediately after exposure to LSMMG. Comparison with earlier studies of Salmonella enterica serovar Typhimurium conducted under similar growth conditions, revealed essentially no similarity in the genes that were significantly up- or down-regulated. CONCLUSION: Comparison of these results to previous studies suggests that different organisms may dramatically differ in their responses to medically significant low-shear and space environments. Depending on their specific response, some organisms, such as Salmonella, may become preadapted in a manner that predisposes them to increased virulence

    Size-dependent rheology of type-I collagen networks

    Get PDF
    We investigate the system size dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness. In addition, we demonstrate that the overall network failure is determined by the ratio of the gel thickness to the mesh size. These findings have broad implications for cell-matrix interactions, the interpretation of rheological tissue data, and the engineering of biomimetic scaffolds.Comment: 3 pages, 4 figures, to appear in Biophysical Journal Letters, September 201

    Erosion rate maps highlight spatio-temporal patterns of uplift and quantify sediment export of the Northern Andes

    Get PDF
    Erosion rates are widely used to assess tectonic uplift and sediment export from mountain ranges. However, the scarcity of erosion rate measurements often hinders detailed tectonic interpretations. Here, we present 25 new cosmogenic nuclide-derived erosion rates from the Northern Andes of Colombia to study spatio-temporal patterns of uplift along the Central and Eastern Cordillera. Specifically, we combine new and published erosion rate data with precipitation-corrected normalized channel steepness measurements to construct high-resolution erosion rate maps. We find that erosion rates in the southern Central Cordillera are relatively uniform and average ∼0.3 mm/a. In the northern Central Cordillera rapidly eroding canyons dissect slowly eroding, low-relief surfaces uplifting since 8.3+ 3.7 - 2.6 Ma, based on a block uplift model. We interpret that persistent steep slab subduction has led to an erosional steady-state in the southern Central Cordillera, whereas in the northern Central Cordillera, Late Miocene slab flattening caused an acceleration in uplift, to which the landscape has not yet equilibrated. The Eastern Cordillera also displays pronounced erosional disequilibrium, with a slowly eroding central plateau rimmed by faster eroding western and eastern flanks. Our maps suggest Late Miocene topographic growth of the Eastern Cordillera, with deformation focused along the eastern flank, which is also supported by balanced cross-sections and thermochronologic data. Spatial gradients in predicted erosion rates along the eastern flank of the Eastern Cordillera suggest transient basin-ward migration of thrusts. Finally, sediment fluxes based on our erosion maps, suggest that the Eastern Cordillera exports nearly four times more sediment than the Central Cordillera. Our analysis shows that accounting for spatial variations in erosion parameters and climate reveals important variations in tectonic forcing that would otherwise be obscured in traditional river profile analyses. Moreover, given relationships between tectonic and topographic evolution, we hypothesize that spatio-temporal variations in slab dip are the primary driver of the dynamic landscape evolution of the Northern Andes, with potentially superposed effects from inherited Mesozoic rift structures

    Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns

    Get PDF
    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Space Flight Qualification on a Multi-Fiber Ribbon Cable and Array Connector Assembly

    Get PDF
    NASA's Goddard Space Flight Center (GSFC) cooperatively with Sandia National Laboratories completed a series of tests on three separate configurations of multi-fiber ribbon cable and MTP connector assemblies. These tests simulate the aging process of components during launch and long-term space environmental exposure. The multi-fiber ribbon cable assembly was constructed of non-outgassing materials, with radiation-hardened, graded index 100/140-micron optical fiber. The results of this characterization presented here include vibration testing, thermal vacuum monitoring, and extended radiation exposure testing data
    corecore