279 research outputs found
Musculoskeletal balance of the human wrist elucidated using intraoperative laser diffraction
Abstract This review describes a series of experiments in which sarcomere length was measured in human wrist muscles to understand their design. Sarcomere length measurements were combined with studies on cadaveric extremities to generate biomechanical models of human wrist function and to provide insights into the mechanism by which wrist strength balance is achieved. Intraoperative measurements of the human extensor carpi radialis brevis (ECRB) muscle during wrist joint rotation reveal that this muscle appears to be designed to operate on the descending limb of its length-tension curve and generates maximum tension with the wrist fully extended. Interestingly, the synergistic extensor carpi radialis longus (ECRL) also operates on its descending limb but over a much narrower sarcomere length range. This is due to the longer fibers and smaller wrist extension moment arm of the ECRL compared to the ECRB. Sarcomere lengths measured from wrist flexors are shorter compared to the extensors. Using a combination of intraoperative measurements on the flexor carpi ulnaris (FCU) and mechanical measurements of wrist muscles, joints and tendons, the general design of the prime wrist movers emerges: both muscle groups generate maximum force with the wrist fully extended. As the wrist flexes, force decreases due to extensor lengthening along the descending limb of their length-tension curve and flexor shortening along the ascending limb of their length-tension curve. The net result is a nearly constant ratio of flexor to extensor torque over the wrist range of motion and a wrist that is most stable in full extension. These experiments demonstrate the elegant match between muscle, tendon and joints acting at the wrist. Overall, the wrist torque motors appear to be designed for balance and control rather than maximum torque generating capacity
Mechanical considerations in the design of surgical reconstructive procedures
Abstract Tendon transfers are used to restore arm and hand function after injury to the peripheral nerves or after spinal cord injury. Traditional guidelines to choose the length at which the transferred muscle should be attached have a poor scientific foundation. We postulate that passive tension only becomes significant at relatively long lengths and that passive tension as the major factor in intraoperative decision making may result in overstretch of the muscle-tendon unit (MTU) and accompanying low-active force generation. It appears unwise to rely on unknown factors, such as slippage or stress relaxation, to correct an overstretched transfer. Instead, we suggest the use of intra-operative sarcomere length measurements to predict and set the optimal MTU length during reconstructive upper limb surgery.
Relationship between the extent of non-viable myocardium and regional left ventricular function in chronic ischemic heart disease
Purpose. To define the relationship between left ventricular (LV) regional contractile function and the extent of myocardial scar in patients with chronic ischemic heart disease and multi-vessel coronary artery disease. Methods. Twenty-three patients with chronic ischemic heart disease and 5 healthy volunteers underwent magnetic resonance imaging (MRI). In patients, the relative area ( Percent Scar) and transmural extent (Transmurality) of myocardial infarction were computed from short-axis delayed enhancement images. In each image, myocardial segments were categorized based on the extent of infarction they contained, with 6 categories each for Percent Scar and Transmurality: normal, from healthy volunteers; and 0%; 1–25%, 26–50%, 51–75%, and \u3e 76% from patients. In patients and volunteers, regional LV function was quantified by absolute systolic wall thickening from cine images and midwall circumferential strain using tagged images. Results. Compared to normal segments, regional LV function in patients was significantly diminished in all scar extent intervals, with wall thickening=-8% for all categories. Systolic wall thickening was reduced significantly in all categories above 50% Percent Scar and above 25% Transmurality in patients, relative to corresponding 0% categories. Circumferential strain was significantly reduced above 25% Percent Scar and above 25% Transmurality. Conclusions. In patients with chronic ischemic heart disease and multivessel coronary artery disease, wall thickening was more sensitive to changes in scar Transmurality than to changes in Percent Scar. However, circumferential strain was equally sensitive to both indices. In general, circumferential strain was more sensitive than wall thickening to increases in scar extent
Relationship between the extent of non-viable myocardium and regional left ventricular function in chronic ischemic heart disease
Purpose. To define the relationship between left ventricular (LV) regional contractile function and the extent of myocardial scar in patients with chronic ischemic heart disease and multi-vessel coronary artery disease. Methods. Twenty-three patients with chronic ischemic heart disease and 5 healthy volunteers underwent magnetic resonance imaging (MRI). In patients, the relative area ( Percent Scar) and transmural extent (Transmurality) of myocardial infarction were computed from short-axis delayed enhancement images. In each image, myocardial segments were categorized based on the extent of infarction they contained, with 6 categories each for Percent Scar and Transmurality: normal, from healthy volunteers; and 0%; 1–25%, 26–50%, 51–75%, and \u3e 76% from patients. In patients and volunteers, regional LV function was quantified by absolute systolic wall thickening from cine images and midwall circumferential strain using tagged images. Results. Compared to normal segments, regional LV function in patients was significantly diminished in all scar extent intervals, with wall thickening=-8% for all categories. Systolic wall thickening was reduced significantly in all categories above 50% Percent Scar and above 25% Transmurality in patients, relative to corresponding 0% categories. Circumferential strain was significantly reduced above 25% Percent Scar and above 25% Transmurality. Conclusions. In patients with chronic ischemic heart disease and multivessel coronary artery disease, wall thickening was more sensitive to changes in scar Transmurality than to changes in Percent Scar. However, circumferential strain was equally sensitive to both indices. In general, circumferential strain was more sensitive than wall thickening to increases in scar extent
Broadband dual-comb hyperspectral imaging and adaptable spectroscopy with programmable frequency combs
We explore the advantages of a free-form dual-comb spectroscopy (DCS)
platform based on time-programmable frequency combs for real-time, penalty-free
apodized scanning. In traditional DCS, the fundamental spectral resolution,
which equals the comb repetition rate, can be excessively fine for many
applications. While the fine resolution is not itself problematic, it comes
with the penalty of excess acquisition time. Post-processing apodization
(windowing) can be applied to tailor the resolution to the sample, but only
with a deadtime penalty proportional to the degree of apodization. The excess
acquisition time remains. With free-form DCS, this deadtime is avoided by
programming a real-time apodization pattern that dynamically reverses the pulse
periods between the dual frequency combs. In this way, one can tailor the
spectrometer's resolution and update rate to different applications without
penalty. We show operation of a free-form DCS system where the spectral
resolution is varied from the intrinsic fine resolution of 160 MHz up to 822
GHz by applying tailored real-time apodization. Because there is no deadtime
penalty, the spectral signal-to-noise ratio increases linearly with resolution
by 5000x over this range, as opposed to the square root increase observed for
postprocessing apodization in traditional DCS. We explore the flexibility to
change resolution and update rate to perform hyperspectral imaging at slow
camera frame rates, where the penalty-free apodization allows for optimal use
of each frame. We obtain dual-comb hyperspectral movies at a 20 Hz spectrum
update rate with broad optical spectral coverage of over 10 THz
Reduced Skeletal Muscle Satellite Cell Number Alters Muscle Morphology After Chronic Stretch But Allows Limited Serial Sarcomere Addition
Introduction: Muscles add sarcomeres in response to stretch, presumably to maintain optimal sarcomere length. Clinical evidence from patients with cerebral palsy, who have both decreased serial sarcomere number and reduced satellite cells (SCs), suggests a hypothesis that SCs may be involved in sarcomere addition. Methods: A transgenic Pax7‐DTA mouse model underwent conditional SC depletion, and their soleii were then stretch‐immobilized to assess the capacity for sarcomere addition. Muscle architecture, morphology, and extracellular matrix (ECM) changes were also evaluated. Results: Mice in the SC‐reduced group achieved normal serial sarcomere addition in response to stretch. However, muscle fiber cross‐sectional area was significantly smaller and was associated with hypertrophic ECM changes, consistent with fibrosis. Conclusions: While a reduced SC population does not hinder serial sarcomere addition, SCs play a role in muscle adaptation to chronic stretch that involves maintenance of both fiber cross‐sectional area and ECM structure
Muscle geometry affects accuracy of forearm volume determination by magnetic resonance imaging (MRI
Abstract Upper extremity musculoskeletal modeling is becoming increasingly sophisticated, creating a growing need for subject-specific muscle size parameters. One method for determining subject-specific muscle volume is magnetic resonance imaging (MRI). The purpose of this study was to determine the validity of MRI-derived muscle volumes in the human forearm across a variety of muscle sizes and shapes. Seventeen cadaveric forearms were scanned using a fast-spoiled gradient echo pulse sequence with high isotropic spatial resolution (1 mm 3 voxels) on a 3T MR system. Pronator teres (PT), extensor carpi radialis brevis (ECRB), extensor pollicis longus (EPL), flexor carpi ulnaris (FCU), and brachioradialis (BR) muscles were manually segmented allowing volume to be calculated. Forearms were then dissected, muscles isolated, and muscle masses obtained, which allowed computation of muscle volume. Intraclass correlation coefficients (ICC 2,1 ) and absolute volume differences were used to compare measurement methods. There was excellent agreement between the anatomical and MRI-derived muscle volumes (ICC ¼ 0.97, relative error ¼ 12.8%) when all 43 muscles were considered together. When individual muscles were considered, there was excellent agreement between measurement methods for PT (ICC ¼ 0.97, relative error ¼ 8.4%), ECRB (ICC ¼ 0.93, relative error ¼ 7.7%), and FCU (ICC ¼ 0.91, relative error ¼ 9.8%), and fair agreement for EPL (ICC ¼ 0.68, relative error ¼ 21.6%) and BR (ICC ¼ 0.93, relative error ¼ 17.2%). Thus, while MRI-based measurements of muscle volume produce relatively small errors in some muscles, muscles with high surface area-to-volume ratios may predispose them to segmentation error, and, therefore, the accuracy of these measurements may be unacceptable.
- …