279 research outputs found
Recommended from our members
Architecture of the Short External Rotator Muscles of the Hip.
BackgroundMuscle architecture, or the arrangement of sarcomeres and fibers within muscles, defines functional capacity. There are limited data that provide an understanding of hip short external rotator muscle architecture. The purpose of this study was thus to characterize the architecture of these small hip muscles.MethodsEight muscles from 10 independent human cadaver hips were used in this study (n = 80 muscles). Architectural measurements were made on pectineus, piriformis, gemelli, obturators, quadratus femoris, and gluteus minimus. Muscle mass, fiber length, sarcomere length, and pennation angle were used to calculate the normalized muscle fiber length, which defines excursion, and physiological cross-sectional area (PCSA), which defines force-producing capacity.ResultsGluteus minimus had the largest PCSA (8.29 cm2) followed by obturator externus (4.54 cm2), whereas superior gemellus had the smallest PCSA (0.68 cm2). Fiber lengths clustered into long (pectineus - 10.38 cm and gluteus minimus - 10.30 cm), moderate (obturator internus - 8.77 cm and externus - 8.04 cm), or short (inferior gemellus - 5.64 and superior gemellus - 4.85). There were no significant differences among muscles in pennation angle which were all nearly zero. When the gemelli and obturators were considered as a single functional unit, their collective PCSA (10.00 cm2) exceeded that of gluteus minimus as a substantial force-producing group.ConclusionsThe key findings are that these muscles have relatively small individual PCSAs, short fiber lengths, and low pennation angles. The large collective PCSA and short fiber lengths of the gemelli and obturators suggest that they primarily play a stabilizing role rather than a joint rotating role
Musculoskeletal balance of the human wrist elucidated using intraoperative laser diffraction
Abstract This review describes a series of experiments in which sarcomere length was measured in human wrist muscles to understand their design. Sarcomere length measurements were combined with studies on cadaveric extremities to generate biomechanical models of human wrist function and to provide insights into the mechanism by which wrist strength balance is achieved. Intraoperative measurements of the human extensor carpi radialis brevis (ECRB) muscle during wrist joint rotation reveal that this muscle appears to be designed to operate on the descending limb of its length-tension curve and generates maximum tension with the wrist fully extended. Interestingly, the synergistic extensor carpi radialis longus (ECRL) also operates on its descending limb but over a much narrower sarcomere length range. This is due to the longer fibers and smaller wrist extension moment arm of the ECRL compared to the ECRB. Sarcomere lengths measured from wrist flexors are shorter compared to the extensors. Using a combination of intraoperative measurements on the flexor carpi ulnaris (FCU) and mechanical measurements of wrist muscles, joints and tendons, the general design of the prime wrist movers emerges: both muscle groups generate maximum force with the wrist fully extended. As the wrist flexes, force decreases due to extensor lengthening along the descending limb of their length-tension curve and flexor shortening along the ascending limb of their length-tension curve. The net result is a nearly constant ratio of flexor to extensor torque over the wrist range of motion and a wrist that is most stable in full extension. These experiments demonstrate the elegant match between muscle, tendon and joints acting at the wrist. Overall, the wrist torque motors appear to be designed for balance and control rather than maximum torque generating capacity
Mechanical considerations in the design of surgical reconstructive procedures
Abstract Tendon transfers are used to restore arm and hand function after injury to the peripheral nerves or after spinal cord injury. Traditional guidelines to choose the length at which the transferred muscle should be attached have a poor scientific foundation. We postulate that passive tension only becomes significant at relatively long lengths and that passive tension as the major factor in intraoperative decision making may result in overstretch of the muscle-tendon unit (MTU) and accompanying low-active force generation. It appears unwise to rely on unknown factors, such as slippage or stress relaxation, to correct an overstretched transfer. Instead, we suggest the use of intra-operative sarcomere length measurements to predict and set the optimal MTU length during reconstructive upper limb surgery.
Relationship between the extent of non-viable myocardium and regional left ventricular function in chronic ischemic heart disease
Purpose. To define the relationship between left ventricular (LV) regional contractile function and the extent of myocardial scar in patients with chronic ischemic heart disease and multi-vessel coronary artery disease. Methods. Twenty-three patients with chronic ischemic heart disease and 5 healthy volunteers underwent magnetic resonance imaging (MRI). In patients, the relative area ( Percent Scar) and transmural extent (Transmurality) of myocardial infarction were computed from short-axis delayed enhancement images. In each image, myocardial segments were categorized based on the extent of infarction they contained, with 6 categories each for Percent Scar and Transmurality: normal, from healthy volunteers; and 0%; 1–25%, 26–50%, 51–75%, and \u3e 76% from patients. In patients and volunteers, regional LV function was quantified by absolute systolic wall thickening from cine images and midwall circumferential strain using tagged images. Results. Compared to normal segments, regional LV function in patients was significantly diminished in all scar extent intervals, with wall thickening=-8% for all categories. Systolic wall thickening was reduced significantly in all categories above 50% Percent Scar and above 25% Transmurality in patients, relative to corresponding 0% categories. Circumferential strain was significantly reduced above 25% Percent Scar and above 25% Transmurality. Conclusions. In patients with chronic ischemic heart disease and multivessel coronary artery disease, wall thickening was more sensitive to changes in scar Transmurality than to changes in Percent Scar. However, circumferential strain was equally sensitive to both indices. In general, circumferential strain was more sensitive than wall thickening to increases in scar extent
Relationship between the extent of non-viable myocardium and regional left ventricular function in chronic ischemic heart disease
Purpose. To define the relationship between left ventricular (LV) regional contractile function and the extent of myocardial scar in patients with chronic ischemic heart disease and multi-vessel coronary artery disease. Methods. Twenty-three patients with chronic ischemic heart disease and 5 healthy volunteers underwent magnetic resonance imaging (MRI). In patients, the relative area ( Percent Scar) and transmural extent (Transmurality) of myocardial infarction were computed from short-axis delayed enhancement images. In each image, myocardial segments were categorized based on the extent of infarction they contained, with 6 categories each for Percent Scar and Transmurality: normal, from healthy volunteers; and 0%; 1–25%, 26–50%, 51–75%, and \u3e 76% from patients. In patients and volunteers, regional LV function was quantified by absolute systolic wall thickening from cine images and midwall circumferential strain using tagged images. Results. Compared to normal segments, regional LV function in patients was significantly diminished in all scar extent intervals, with wall thickening=-8% for all categories. Systolic wall thickening was reduced significantly in all categories above 50% Percent Scar and above 25% Transmurality in patients, relative to corresponding 0% categories. Circumferential strain was significantly reduced above 25% Percent Scar and above 25% Transmurality. Conclusions. In patients with chronic ischemic heart disease and multivessel coronary artery disease, wall thickening was more sensitive to changes in scar Transmurality than to changes in Percent Scar. However, circumferential strain was equally sensitive to both indices. In general, circumferential strain was more sensitive than wall thickening to increases in scar extent
Broadband dual-comb hyperspectral imaging and adaptable spectroscopy with programmable frequency combs
We explore the advantages of a free-form dual-comb spectroscopy (DCS)
platform based on time-programmable frequency combs for real-time, penalty-free
apodized scanning. In traditional DCS, the fundamental spectral resolution,
which equals the comb repetition rate, can be excessively fine for many
applications. While the fine resolution is not itself problematic, it comes
with the penalty of excess acquisition time. Post-processing apodization
(windowing) can be applied to tailor the resolution to the sample, but only
with a deadtime penalty proportional to the degree of apodization. The excess
acquisition time remains. With free-form DCS, this deadtime is avoided by
programming a real-time apodization pattern that dynamically reverses the pulse
periods between the dual frequency combs. In this way, one can tailor the
spectrometer's resolution and update rate to different applications without
penalty. We show operation of a free-form DCS system where the spectral
resolution is varied from the intrinsic fine resolution of 160 MHz up to 822
GHz by applying tailored real-time apodization. Because there is no deadtime
penalty, the spectral signal-to-noise ratio increases linearly with resolution
by 5000x over this range, as opposed to the square root increase observed for
postprocessing apodization in traditional DCS. We explore the flexibility to
change resolution and update rate to perform hyperspectral imaging at slow
camera frame rates, where the penalty-free apodization allows for optimal use
of each frame. We obtain dual-comb hyperspectral movies at a 20 Hz spectrum
update rate with broad optical spectral coverage of over 10 THz
Reduced Skeletal Muscle Satellite Cell Number Alters Muscle Morphology After Chronic Stretch But Allows Limited Serial Sarcomere Addition
Introduction: Muscles add sarcomeres in response to stretch, presumably to maintain optimal sarcomere length. Clinical evidence from patients with cerebral palsy, who have both decreased serial sarcomere number and reduced satellite cells (SCs), suggests a hypothesis that SCs may be involved in sarcomere addition. Methods: A transgenic Pax7‐DTA mouse model underwent conditional SC depletion, and their soleii were then stretch‐immobilized to assess the capacity for sarcomere addition. Muscle architecture, morphology, and extracellular matrix (ECM) changes were also evaluated. Results: Mice in the SC‐reduced group achieved normal serial sarcomere addition in response to stretch. However, muscle fiber cross‐sectional area was significantly smaller and was associated with hypertrophic ECM changes, consistent with fibrosis. Conclusions: While a reduced SC population does not hinder serial sarcomere addition, SCs play a role in muscle adaptation to chronic stretch that involves maintenance of both fiber cross‐sectional area and ECM structure
- …