19 research outputs found

    Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects

    Full text link
    We derive the post-Newtonian next-to-leading order conservative spin-orbit and spin(a)-spin(b) gravitational interaction Hamiltonians for arbitrary many compact objects. The spin-orbit Hamiltonian completes the knowledge of Hamiltonians up to and including 2.5PN for the general relativistic three-body problem. The new Hamiltonians include highly nontrivial three-body interactions, in contrast to the leading order consisting of two-body interactions only. This may be important for the study of effects like Kozai resonances in mergers of black holes with binary black holes.Comment: 13 pages, 1 Mathematica source file, v2: submitted version, v3: published version, some minor correction

    Constraints on the minimal supergravity model from the b->s+\gamma decay

    Full text link
    The constraints on the minimal supergravity model from the b->s+\gamma decay are studied. A large domain in the parameter space for the model satisfies the CLEO bound, BR(b->s+\gamma)<5.4X10^{-4}. However, the allowed domain is expected to diminish significantly with an improved bound on this decay. The dependence of the b->s+\gamma branching ratio on various parameters is studied in detail. It is found that, for A_t<0 and the top quark mass within the vicinity of the center of the CDF value, m_t^{pole}=174\pm17 GeV, there exists only a small allowed domain because the light stop is tachyonic for most of the parameter space. A similar phenomenon exists for a lighter top and A_t negative when the GUT coupling constant is slightly reduced. For A_t>0, however, the branching ratio is much less sensitive to small changes in m_t, and \alpha_G.Comment: 12 pages, plain tex file, three figures avaliable upon request, CTP-TAMU-03/94, NUB-TH.7316/94, and CERN-TH.3092/9

    Landau Pole Effects and the Parameter Space of the Minimal Supergravity Model

    Get PDF
    It is shown that analyses at the electroweak scale can be significantly affected due to Landau pole effects in certain regions of the parameter space. This phenomenon arises due to a large magnification of errors of the input parameters mtm_t, αG\alpha_G which have currently a 10 percent uncertainty in their determination. The influence of the Landau pole on the constraint that the scalar SUSY spectrum be free of tachyons is also investigated.It is found that this constraint is very strong and eliminates a large portion of the parameter space.Under the above constraint the trilinear soft SUSY breaking term at the electroweak scale is found to lie in a restricted domain.Comment: 24 pages,Tex, including 4 figures available on reques

    Grazing Collisions of Black Holes via the Excision of Singularities

    Get PDF
    We present the first simulations of non-headon (grazing) collisions of binary black holes in which the black hole singularities have been excised from the computational domain. Initially two equal mass black holes mm are separated a distance 10m\approx10m and with impact parameter 2m\approx2m. Initial data are based on superposed, boosted (velocity 0.5c\approx0.5c) solutions of single black holes in Kerr-Schild coordinates. Both rotating and non-rotating black holes are considered. The excised regions containing the singularities are specified by following the dynamics of apparent horizons. Evolutions of up to t35mt \approx 35m are obtained in which two initially separate apparent horizons are present for t3.8mt\approx3.8m. At that time a single enveloping apparent horizon forms, indicating that the holes have merged. Apparent horizon area estimates suggest gravitational radiation of about 2.6% of the total mass. The evolutions end after a moderate amount of time because of instabilities.Comment: 2 References corrected, reference to figure update

    Tips for implementing multigrid methods on domains containing holes

    Full text link
    As part of our development of a computer code to perform 3D `constrained evolution' of Einstein's equations in 3+1 form, we discuss issues regarding the efficient solution of elliptic equations on domains containing holes (i.e., excised regions), via the multigrid method. We consider as a test case the Poisson equation with a nonlinear term added, as a means of illustrating the principles involved, and move to a "real world" 3-dimensional problem which is the solution of the conformally flat Hamiltonian constraint with Dirichlet and Robin boundary conditions. Using our vertex-centered multigrid code, we demonstrate globally second-order-accurate solutions of elliptic equations over domains containing holes, in two and three spatial dimensions. Keys to the success of this method are the choice of the restriction operator near the holes and definition of the location of the inner boundary. In some cases (e.g. two holes in two dimensions), more and more smoothing may be required as the mesh spacing decreases to zero; however for the resolutions currently of interest to many numerical relativists, it is feasible to maintain second order convergence by concentrating smoothing (spatially) where it is needed most. This paper, and our publicly available source code, are intended to serve as semi-pedagogical guides for those who may wish to implement similar schemes.Comment: 18 pages, 11 figures, LaTeX. Added clarifications and references re. scope of paper, mathematical foundations, relevance of work. Accepted for publication in Classical & Quantum Gravit

    Nucleosynthesis Constraints on a Massive Gravitino in Neutralino Dark Matter Scenarios

    Full text link
    The decays of massive gravitinos into neutralino dark matter particles and Standard Model secondaries during or after Big-Bang nucleosynthesis (BBN) may alter the primordial light-element abundances. We present here details of a new suite of codes for evaluating such effects, including a new treatment based on PYTHIA of the evolution of showers induced by hadronic decays of massive, unstable particles such as a gravitino. We also develop an analytical treatment of non-thermal hadron propagation in the early universe, and use this to derive analytical estimates for light-element production and in turn on decaying particle lifetimes and abundances. We then consider specifically the case of an unstable massive gravitino within the constrained minimal supersymmetric extension of the Standard Model (CMSSM). We present upper limits on its possible primordial abundance before decay for different possible gravitino masses, with CMSSM parameters along strips where the lightest neutralino provides all the astrophysical cold dark matter density. We do not find any CMSSM solution to the cosmological Li7 problem for small m_{3/2}. Discounting this, for m_{1/2} ~ 500 GeV and tan beta = 10 the other light-element abundances impose an upper limit m_{3/2} n_{3/2}/n_\gamma < 3 \times 10^{-12} GeV to < 2 \times 10^{-13} GeV for m_{3/2} = 250 GeV to 1 TeV, which is similar in both the coannihilation and focus-point strips and somewhat weaker for tan beta = 50, particularly for larger m_{1/2}. The constraints also weaken in general for larger m_{3/2}, and for m_{3/2} > 3 TeV we find a narrow range of m_{3/2} n_{3/2}/n_\gamma, at values which increase with m_{3/2}, where the Li7 abundance is marginally compatible with the other light-element abundances.Comment: 74 pages, 40 Figure

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    The decay b --> sγ\gamma in SUSY extensions of the standard model

    No full text
    A brief review is given of the decay b-s+gamma in SUSY extensions of the Standard Model.It is found that the recent CLEO results put strong constraints on the parameter space of the minimal N=1 Supergravity unified theory.Dark matter analyses are also strongly constrained for mu>0.A brief review is given of the decay b-s+gamma in SUSY extensions of the Standard Model.It is found that the recent CLEO results put strong constraints on the parameter space of the minimal N=1 Supergravity unified theory.Dark matter analyses are also strongly constrained for mu>0
    corecore