16 research outputs found

    Fishing quotas in Europe: who gets the right to fish?

    Get PDF
    Under the EU’s Common Fisheries Policy, each Member State decides how to allocate its national fishing quota to its fishing fleet. Griffin Carpenter and Richard Kleinjans explain that many issues in fisheries policy are the result of these decisions around access and distribution, and there are ripe opportunities for reform

    EU common fisheries policy is bound for a Brexit shake-up

    Get PDF
    Under the EU's Common Fisheries Policy, each Member State decides how to allocate its national fishing quota to its fishing fleet. Griffin Carpenter and Richard Kleinjans explain that many issues in fisheries policy are the result of these decisions around access and distribution, and there are ripe opportunities for reform

    Landing the blame : the influence of EU Member States on quota setting

    Get PDF
    Fisheries in European Union (EU) waters have been managed under the Common Fisheries Policy since 1983. The main regulatory tool in EU fisheries management is the use of Total Allowable Catches (TACs). In principle, TACs are set according to biological scientific advice provided by the International Council for the Exploration of the Sea (ICES) which recommends catch limits with the objective of maximising catches in a sustainable manner. The objective of this paper is to compare TACs set by the EU and its Member States between 2001 and 2015 with those recommended by ICES in their annual scientific advice in order to (a) investigate the level of compliance with scientific advice by the European Council and, (b) consider whether particular Member States have received more TACs above advice than others. For the time-series analysed, the European Council set TACs above scientific advice by an average of 20% per year, with around 7 out of every 10 TACs exceeding advice. Of all Member States, Denmark and the United Kingdom received the highest TACs in volume above scientific advice. Relative to the size of their TAC however, Spain and Portugal exceeded advice by the greatest percentage. Greater transparency is required to determine what takes place during the closed door negotiations and to improve the fishery sustainability credentials of the EU and its Member States

    Moving Forward in Human Cancer Risk Assessment

    Get PDF
    The goal of human risk assessment is to decide whether a given exposure level to a particular chemical or substance is acceptable to human health, and to provide risk management measures based on an evaluation and prediction of the effects of that exposure on human health. Within this framework, the current safety paradigm for assessing possible carcinogenic properties of drugs, cosmetics, industrial chemicals and environmental exposures relies mainly on in vitro genotoxicity testing followed by 2-year bioassays in mice and rats. This testing paradigm was developed 40 to 50 years ago with the initial premise that ¿mutagens are also carcinogens¿ and that the carcinogenic risk to humans can be extrapolated from the tumor incidence after lifetime exposure to maximally tolerated doses of chemicals in rodents. Genotoxicity testing is used as a surrogate for carcinogenicity testing and is required for initiation of clinical trials (Jacobs and Jacobson-Kram 2004) and for most industrial chemicals safety assessment. Although the carcinogenicity-testing paradigm has effectively protected patients and consumers from introduction of harmful carcinogens as drugs and other products, the testing paradigm is clearly not sustainable in the future. The causal link between genetic damage and carcinogenicity is well documented; however, the limitations of genotoxicity/carcinogenicity testing assays, the presence of additional non-genotoxic mechanisms, issues of species-specific effects, and the lack of mechanistic insights provide an enormous scientific challenge. The 2-year rodent carcinogenicity bioassays are associated with technical complexity, high costs, high animal burden as well as the uncertainty associated with extrapolating from rodents to humans. Additional frustrations exist because of the limited predictability of the 2-year bioassay and, in particular, with regard to the problem of the prediction of false positives. For instance, in the Carcinogenic Potency Project DataBase (CPDB) which includes results from chronic, long-term animal cancer tests with mice, rats, hamsters amounting to a total of 6540 individual experiments with 1547 chemicals, 751 of those chemicals or 51% have positive findings in rodent studies. Similarly, when one considers all chronically used human pharmaceuticals, some 50% induce tumors in rodents. Yet only 20 human pharmaceutical compounds have been identified as carcinogens in epidemiological studies, despite the fact that quite a large number of epidemiological studies have been carried out on these compounds, e.g. NSAID¿s, benzodiazepines, phenobarbital. This high incidence of tumors in bioassays has lead to questions concerning the human relevance of tumors induced in rodents (Knight et al. 2006; Ward 2008). In summary, dependency on the rodent model as a golden standard of cancer risk assessment is neglecting the high number of false positives and clearly has serious limitations. Consequently, there is a growing appeal for a paradigm change after "50 years of rats and mice". For instance, the current demands for volume of carcinogenic testing together with limitations of animal usage as initially stipulated by REACH (Combes et al. 2006) will require revolutionary change in the testing paradigm. For the purpose of developing a road map for this needed paradigm change in carcinogenicity testing, a workshop was held in August 2009 in Venice, Italy entitled ¿Genomics in Cancer Risk Assessment.¿ This workshop brought together toxicologists from academia and industry with governmental regulators and risk assessors from the US and the EU, for discussing the state-of-the-art in developing alternative testing strategies for genotoxicity and carcinogenicity, thereby focusing on the contribution from the ¿omics technologies. What follows is a highlight of the major conclusions and suggestions from this workshop as a path forward.JRC.DG.I.3-In-vitro method

    Altered sphingolipid function in Alzheimer's disease;:a gene regulatory network approach

    Get PDF
    Sphingolipids (SLs) are bioactive lipids involved in various important physiological functions. The SL pathway has been shown to be affected in several brain-related disorders, including Alzheimer's disease (AD). Recent evidence suggests that epigenetic dysregulation plays an important role in the pathogenesis of AD as well. Here, we use an integrative approach to better understand the relationship between epigenetic and transcriptomic processes in regulating SL function in the middle temporal gyrus of AD patients. Transcriptomic analysis of 252 SL-related genes, selected based on GO term annotations, from 46 AD patients and 32 healthy age-matched controls, revealed 103 differentially expressed SL-related genes in AD patients. Additionally, methylomic analysis of the same subjects revealed parallel hydroxymethylation changes in PTGIS, GBA, and ITGB2 in AD. Subsequent gene regulatory network-based analysis identified 3 candidate genes, that is, SELPLG, SPHK1 and CAV1 whose alteration holds the potential to revert the gene expression program from a diseased towards a healthy state. Together, this epigenomic and transcriptomic approach highlights the importance of SL-related genes in AD, and may provide novel biomarkers and therapeutic alternatives to traditionally investigated biological pathways in AD.</p

    An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied <it>in vitro </it>but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on <it>in vitro </it>systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the <it>in vitro </it>model system and model toxicant, respectively.</p> <p>Results</p> <p>The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD.</p> <p>Conclusions</p> <p>Untargeted profiling of the polar and apolar metabolites of <it>in vitro </it>cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.</p

    Dynamic Interplay between the Transcriptome and Methylome in Response to Oxidative and Alkylating Stress

    No full text
    In recent years, it has been shown that free radicals not only react directly with DNA but also regulate epigenetic processes such as DNA methylation, which may be relevant within the context of, for example, tumorigenesis. However, how these free radicals impact the epigenome remains unclear. We therefore investigated whether methyl and hydroxyl radicals, formed by <i>tert</i>-butyl hydroperoxide (TBH), change temporal DNA methylation patterns and how this interferes with genome-wide gene expression. At three time points, TBH-induced radicals in HepG2 cells were identified by electron spin resonance spectroscopy. Total 5-methylcytosine (5mC) levels were determined by liquid chromatography and tandem mass spectrometry and genome-wide changes in 5mC and gene expression by microarrays. Induced methylome changes rather represent an adaptive response to the oxidative stress-related reactions observed in the transcriptome. More specifically, we found that methyl radicals did not induce DNA methylation directly. An initial oxidative and alkylating stress-related response of the transcriptome during the early phase of TBH treatment was followed by an epigenetic response associated with cell survival signaling. Also, we identified genes of which the expression seems directly regulated by DNA methylation. This work suggests an important role of the methylome in counter-regulating primary oxidative and alkylating stress responses in the transcriptome to restore normal cell function. Altogether, the methylome may play an important role in counter-regulating primary oxidative and alkylating stress responses in the transcriptome presumably to restore normal cell function
    corecore