470 research outputs found

    Method Emergence in Practice - Influences and Consequences

    Get PDF
    This paper explores the relationship between what influences and shapes the unique and locally situated method-in-action and how it consequently emerges. Based on a synthesis of prominent Information Systems (Development) literature, an analytical framework is developed. The framework is organised into three perspectives: 1) the structuralist, 2) the individualist and 3) the interactive process perspective. Each perspective supplies a set of key concepts for conceptual understanding and empirical exploration. The analytical framework is used to structure and analyse a two-year longitudinal case study of method emergence in a web-based ISD project. The paper concludes with a summary of the research and its implications. We propose that this research and future theoretical and empirical contributions that address the relationship between the whats and hows of method emergence will support and improve ISD researchers’ and practitioners’ ability to pay attention to and act in accordance with the myriad characteristics, actors and events that shape the method-inaction in practice. Such contributions we argue will build up a vigilance and capacity for problem spotting as well as problem solving

    Relationships between Muscle Contributions to Walking Subtasks and Functional Walking Status in Persons with Post-Stroke Hemiparesis

    Get PDF
    Walking speed is commonly used to predict stroke severity and assess functional walking status (i.e., household, limited community and community walking status) post-stroke. The underlying mechanisms that limit walking speed (and functional walking status by extension) need to be understood to improve post-stroke rehabilitation. Previous experimental studies have shown correlations between paretic plantarflexor output during the pre-swing phase and walking speed and suggest that the paretic hip flexors can compensate in some hemiparetic subjects. Modeling and simulation studies of healthy walking have shown that the ankle plantarflexors, soleus (SOL) and gastrocnemius (GAS), and uniarticular hip flexors (IL) are essential contributors to the walking subtasks of forward propulsion, swing initiation and/or power generation during pre-swing. However, the relationships between functional walking status and individual muscle contributions to these walking subtasks in hemiparetic walking are unknown. The goal of this study was to use 3D forward dynamics simulations to investigate the relationships between functional walking status in post-stroke hemiparetic walking and muscle contributions to forward propulsion, swing initiation and power generation

    Pre-Swing Deficits in Forward Propulsion, Swing Initiation and Power Generation by Individual Muscles in Hemiparetic Walking

    Get PDF
    Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected walking speed (i.e., limited community=0.4–0.8 m/s and community walkers=\u3e0.8 m/s) and a speed-matched control were generated to quantify individual muscle contributions to forward propulsion, swing initiation and power generation during the pre-swing phase (i.e., double support phase proceeding toe-off). Simulation analyses identified decreased paretic soleus and gastrocnemius contributions to forward propulsion and power generation as the primary impairment in the limited community walker compared to the control subject. The non-paretic leg did not compensate for decreased forward propulsion by paretic muscles during pre-swing in the limited community walker. Paretic muscles had the net effect to absorb energy from the paretic leg during pre-swing in the community walker suggesting that deficits in swing initiation are a primary impairment. Specifically, the paretic gastrocnemius and hip flexors (i.e., iliacus, psoas and sartorius) contributed less to swing initiation and the paretic soleus and gluteus medius absorbed more power from the paretic leg in the community walker compared to the control subject. Rehabilitation strategies aimed at diminishing these deficits have much potential to improve walking function in these hemiparetic subjects and those with similar deficits

    Anticipating Vehicle-Level EMI using a Multi-Step Approach

    Get PDF
    A multi-step procedure for anticipating vehicle-level EMI is proposed in this paper. This approach uses multi-conductor transmission line (MTL) modeling to calculate current distributions along the cable bundle. A common-mode circuit is extracted from the MTL modeling, and is employed in full-vehicle full-wave modeling to determine radiation and interference. In this paper, mode-dispersion and mode-conversion phenomena are investigated, and the ambiguous definitions of the common-mode voltage and common-mode impedance are discussed

    Anticipating EMI and On-Board Interference in Automotive Platforms

    Get PDF
    A dual-step MTL / FDTD strategy is proposed for anticipating full-vehicle level EMI. In the first step, the current distribution along a cable bundle connecting to electronic modules an an automotive platform is calculated using multi-conductor transmission-line (MTL) models. In order to account for common-mode discontinuities on the vehicle chassis, e.g., slots, 3D full-wave modeling (FDTD) is used to determine radiation impedances, which are thereafter incorporated in the MTL models for compensating the radiation power loss. In the second step, the obtained currents are implemented as impressed current sources in full-vehicle full-wave modeling using an FDTD multi-wire subcelluar algorithm. Thus, the full-vehicle emissions from the automotive harness and the common-mode discontinuities of the vehicle chassis can be predicted. The effectiveness and limitation of this approach have been demonstrated in a controlled laboratory environment

    A Dual-current Method for Characterizing Common-Mode Loop Impedance

    Get PDF
    The definition of common-mode loop impedance is proposed instead of the ambiguous definition of common-mode impedance. Moreover, a non-invasive measurement method to characterize the common-mode loop impedance using dual clamp-on current probe is presented herein. The frequency responses of the current probes are de-embedded through a calibration procedure. Independent direct measurements using a network analyzer corroborate the validity of the Dual-Current-Probe Method

    Optical Gaze Tracking with Spatially-Sparse Single-Pixel Detectors

    Get PDF
    Gaze tracking is an essential component of next generation displays for virtual reality and augmented reality applications. Traditional camera-based gaze trackers used in next generation displays are known to be lacking in one or multiple of the following metrics: power consumption, cost, computational complexity, estimation accuracy, latency, and form-factor. We propose the use of discrete photodiodes and light-emitting diodes (LEDs) as an alternative to traditional camera-based gaze tracking approaches while taking all of these metrics into consideration. We begin by developing a rendering-based simulation framework for understanding the relationship between light sources and a virtual model eyeball. Findings from this framework are used for the placement of LEDs and photodiodes. Our first prototype uses a neural network to obtain an average error rate of 2.67{\deg} at 400Hz while demanding only 16mW. By simplifying the implementation to using only LEDs, duplexed as light transceivers, and more minimal machine learning model, namely a light-weight supervised Gaussian process regression algorithm, we show that our second prototype is capable of an average error rate of 1.57{\deg} at 250 Hz using 800 mW.Comment: 10 pages, 8 figures, published in IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 202

    Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    Get PDF
    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station

    Commentary: Essential Programs and Services Model

    Get PDF
    To further discussion about the Essential Programs and Services (EPS) model for funding public education in Maine, Maine Policy Review asked eight superintendents—representing districts across the state— to provide their views. We also asked each to discuss the needs of his district and whether additional state policy options were necessary to tackle the most pressing issues. The districts represented by these superintendents are a cross section of urban and rural high-receivers and low-receivers. Still, several commonalities emerge: the need for a state commitment that does not wax and wane with the business cycle; the urgency of professional development for new and experienced teachers; and, the importance of linking student outcomes with student assessment measures and student funding. In short, EPS is not seen as a solution to the state’s ongoing debate over public-education funding, but is recognized as a necessary first step

    High-Performance Acousto-Ultrasonic Scan System Being Developed

    Get PDF
    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites
    • …
    corecore