40 research outputs found

    Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics

    Get PDF
    It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test some of the predictions of ecological theory in a natural ecosystem of global conservation and economic val

    Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing

    Get PDF
    Seagrass ecosystems are diminishing worldwide and repeated studies confirm a lack of appreciation for the value of these systems. In order to highlight their value we provide the first discussion of seagrass meadows as a coupled social–ecological system on a global scale. We consider the impact of a declining resource on people, including those for whom seagrass meadows are utilised for income generation and a source of food security through fisheries support. Case studies from across the globe are used to demonstrate the intricate relationship between seagrass meadows and people that highlight the multi-functional role of seagrasses in human wellbeing. While each case underscores unique issues, these examples simultaneously reveal social–ecological coupling that transcends cultural and geographical boundaries. We conclude that understanding seagrass meadows as a coupled social–ecological system is crucial in carving pathways for social and ecological resilience in light of current patterns of local to global environmental change

    Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage

    Get PDF
    The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species

    The response of the seagrass Halodule wrightii Ascherson to environmental stressors

    Get PDF
    Seagrasses are subjected to intense levels of anthropogenic disturbance as a result of the shallow nearshore waters they inhabit. Some seagrasses are known to have dynamic growth patterns, enabling them to colonize unstable shallow environments and adapt to a range of disturbances. This can result in high levels of variability in morphological and physiological attributes. The seagrass Halodule wrightii is known to be a fast-growing pioneering species with a large geographic range. The present study examines Halodule wrightii in a region under intense anthropogenic stress in order to determine what are the main environmental drivers affecting the morphology, physiology and status of these habitats. Parameters of plant morphology, physiology and status were measured either at the meadow scale (e.g. biochemistry) or at a higher frequency shoot scale (e.g. shoot width). We assigned an impact assessment index to a series of seagrass sites over a gradient of anthropogenic disturbance and found this to be explanatory of a number of the seagrass parameters measured including epiphyte cover, stable isotope δ15N and ETRmax however, it did not clearly explain shoot density, a commonly used bioindicator of environmental stress. At the shoot scale, Principal Component Analysis identified epiphyte and leaf width to have the strongest association. At the meadow scale this was shoot density, dry weight and Ek, albeit with the most impacted sites showing highest shoot density. Stable isotope (δ15N) and leaf length were most significant in explaining the variation between sites and impact category, providing a direct link between anthropogenic sources of nutrients to seagrass meadow density

    Crowdsourcing conservation: The role of citizen science in securing a future for seagrass

    Get PDF
    Seagrass meadows are complex social-ecological systems. Understanding seagrass meadows demands a fresh approach integrating “the human dimension”. Citizen science is widely acknowledged for providing significant contributions to science, education, society and policy. Although the take up of citizen science in the marine environment has been slow, the need for such methods to fill vast information gaps is arguably great. Seagrass meadows are easy to access and provide an example of where citizen science is expanding. Technological developments have been pivotal to this, providing new opportunities for citizens to engage with seagrass. The increasing use of online tools has created opportunities to collect and submit as well as help process and analyse data. Citizen science has helped researchers integrate scientific and local knowledge and engage communities to implement conservation measures. Here we use a selection of examples to demonstrate how citizen science can secure a future for seagrass

    Green turtle diet is dominated by seagrass in the Western Indian Ocean except amongst gravid females

    Get PDF
    Green turtles (Chelonia mydas) are key herbivores of tropical and subtropical neritic habitats and play a major role in structuring seagrass meadows. We present the first detailed assessment of green turtle diet in the Western Indian Ocean using the gut contents of salvaged animals from three atolls in the Republic of Seychelles separated from each other by 400-825 km: Cosmoledo (adults, n=12), Farquhar (adults, n=33; immature, n=1) collected in 1982-1983; and Desroches (immatures, n=8) in 2016-2018. We report the first comparison of the diets of gravid females (n=17), males (n=26) and non-breeding females (n=2) at sites providing both foraging and breeding habitat. Seagrass (mostly Thalassodendron ciliatum) dominated the diet, accounting for 95% of the mean gut content biomass for males and non-breeding females but only 58% for gravid females, alongside relatively large amounts of substrate (14%) and macroalgae (13%). Satellite tracking of post-nesting green turtles from Chagos Archipelago in 2016 located foraging sites at Farquhar Atoll that coincided with capture locations of 26 of the 33 adult turtles sampled there in 1983. In situ surveys of those sites in 2018 revealed extensive nearly monospecific beds of T. ciliatum. The prominence of seagrass in the diet of green turtles and connectivity between foraging and nesting habitats throughout the region illustrate the need to conserve and monitor seagrass habitats of the Western Indian Ocean especially in the context of changing green turtle population densities

    Seagrass ecosystem contributions to people's quality of life in the Pacific Island Countries and Territories

    Get PDF
    Seagrass ecosystems provide critical contributions (goods and perceived benefits or detriments) for the livelihoods and wellbeing of Pacific Islander peoples. Through in-depth examination of the contributions provided by seagrass ecosystems across the Pacific Island Countries and Territories (PICTs), we find a greater quantity in the Near Oceania (New Guinea, the Bismarck Archipelago and the Solomon Islands) and western Micronesian (Palau and Northern Marianas) regions; indicating a stronger coupling between human society and seagrass ecosystems. We also find many non-material contributions historically have been overlooked and under-appreciated by decision-makers. Closer cultural connections likely motivate guardianship of seagrass ecosystems by Pacific communities to mitigate local anthropogenic pressures. Regional comparisons also shed light on general and specific aspects of the importance of seagrass ecosystems to Pacific Islanders, which are critical for forming evidence-based policy and management to ensure the long-term resilience of seagrass ecosystems and the contributions they provide

    Seagrass ecosystems of the Pacific Island countries and territories: a global bright spot

    Get PDF
    Seagrass ecosystems exist throughout Pacific Island Countries and Territories (PICTs). Despite this area covering nearly 8% of the global ocean, information on seagrass distribution, biogeography, and status remains largely absent from the scientific literature. We confirm 16 seagrass species occur across 17 of the 22 PICTs with the highest number in Melanesia, followed by Micronesia and Polynesia respectively. The greatest diversity of seagrass occurs in Papua New Guinea (13 species), and attenuates eastward across the Pacific to two species in French Polynesia. We conservatively estimate seagrass extent to be 1446.2 km2, with the greatest extent (84%) in Melanesia. We find seagrass condition in 65% of PICTs increasing or displaying no discernible trend since records began. Marine conservation across the region overwhelmingly focuses on coral reefs, with seagrass ecosystems marginalised in conservation legislation and policy. Traditional knowledge is playing a greater role in managing local seagrass resources and these approaches are having greater success than contemporary conservation approaches. In a world where the future of seagrass ecosystems is looking progressively dire, the Pacific Islands appears as a global bright spot, where pressures remain relatively low and seagrass more resilient

    Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale

    Get PDF
    Seagrass meadows are threatened by multiple pressures, jeopardizing the many benefits they provide to humanity and biodiversity, including climate regulation and food provision through fisheries production. Conservation of seagrass requires identification of the main pressures contributing to loss and the regions most at risk of ongoing loss. Here, we model trajectories of seagrass change at the global scale and show they are related to multiple anthropogenic pressures but that trajectories vary widely with seagrass life-history strategies. Rapidly declining trajectories of seagrass meadow extent (>25% loss from 2000 to 2010) were most strongly associated with high pressures from destructive demersal fishing and poor water quality. Conversely, seagrass meadow extent was more likely to be increasing when these two pressures were low. Meadows dominated by seagrasses with persistent life-history strategies tended to have slowly changing or stable trajectories, while those with opportunistic species were more variable, with a higher probability of either rapidly declining or rapidly increasing. Global predictions of regions most at risk for decline show high-risk areas in Europe, North America, Japan, and southeast Asia, including places where comprehensive long-term monitoring data are lacking. Our results highlight where seagrass loss may be occurring unnoticed and where urgent conservation interventions are required to reverse loss and sustain their essential services
    corecore