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Abstract
Green turtles (Chelonia mydas) are key herbivores of tropical and subtropical neritic habitats and play a major role in struc-
turing seagrass meadows. We present the first detailed assessment of green turtle diet in the Western Indian Ocean using the 
gut contents of salvaged animals from three atolls in the Republic of Seychelles separated from each other by 400–825 km: 
Cosmoledo (adults, n = 12), Farquhar (adults, n = 33; immature, n = 1) collected in 1982–1983; and Desroches (immatures, 
n = 8) in 2016–2018. We report the first comparison of the diets of gravid females (n = 17), males (n = 26) and non-breeding 
females (n = 2) at sites providing both foraging and breeding habitat. Seagrass (mostly Thalassodendron ciliatum) dominated 
the diet, accounting for 95% of the mean gut content biomass for males and non-breeding females but only 58% for gravid 
females, alongside relatively large amounts of substrate (14%) and macroalgae (13%). Satellite tracking of post-nesting green 
turtles from Chagos Archipelago in 2016 located foraging sites at Farquhar Atoll that coincided with capture locations of 26 
of the 33 adult turtles sampled there in 1983. In situ surveys of those sites in 2018 revealed extensive nearly monospecific 
beds of T. ciliatum. The prominence of seagrass in the diet of green turtles and connectivity between foraging and nesting 
habitats throughout the region illustrate the need to conserve and monitor seagrass habitats of the Western Indian Ocean 
especially in the context of changing green turtle population densities.

Introduction

Green turtles (Chelonia mydas) are marine ecosystem engi-
neers that structure seagrass meadows through their forag-
ing activities, often increasing its complexity (Coleman and 
Williams 2002) or, conversely, reducing species composition 
(Kelkar et al. 2013a; Lal et al. 2010) and production rates 

(Kelkar et al. 2013b). There is increasing evidence that this 
functioning helps to provide seagrass habitats with greater 
resilience to anthropogenic impacts (Christianen et al. 2012). 
Changes in green turtle density at foraging sites will, thus, 
have a consequence for seagrass ecosystem health. Due to 
numerous anthropogenic threats and population declines, the 
green turtle had been listed as globally endangered on the 
IUCN Red List (Seminoff 2004), but long-term population 
recovery, thanks to successful conservation strategies such 
as protection of turtles and their habitats at nesting sites, 
has led to long-term population recovery. This is reflected 
in recent and ongoing IUCN downlisting of various green 
turtle subpopulations around the world (e.g., to “least con-
cern” for the Hawaiian and South Atlantic subpopulations 
(Chaloupka and Pilcher 2019; Broderick and Patricio 2019) 
and to Vulnerable for the North Indian Ocean subpopula-
tion (Mancini et al. 2019) and, in literature, documenting 
of increasing population trends globally (Chaloupka et al. 
2008; Seminoff et al. 2015; Mazaris et al. 2017), including 
upward trends in the Western Indian Ocean (Bourjea et al. 
2007; Lauret-Stepler et al. 2007; Mortimer et al. 2011).
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Upon leaving the nesting beach as hatchlings, young 
green turtles occupy open ocean pelagic habitats (Bjorndal 
1997). Post-hatchling green turtles are believed to spend 
their first 3–5 years in open ocean pelagic habitat where 
they attain carapace lengths of 25–35 cm feeding primar-
ily on jellies and salps and then recruit to neritic habitats 
(Reich et al. 2007). Ontogenetic dietary change is complex 
and varies regionally (e.g., Cardona et al. 2010; Fukuoka 
et al. 2019). Typically, the diet is omnivorous during the 
early pelagic stages and becomes primarily herbivorous 
after recruitment to the neritic zone (e.g., Howell et al. 2016; 
Vélez-Rubio et al. 2016; Burgett et al. 2018). In the Central 
North Pacific, however, some individuals up to 70 cm curved 
carapace length (CCL) forage pelagically on a primarily car-
nivorous diet (Parker et al. 2011). At some neritic foraging 
habitats, seagrass predominates in the diet (e.g., Mortimer 
1981; Vander Zanden et al. 2013); while at other sites, mac-
roalgae is the primary food source (e.g., Garnett et al. 1985; 
Prior et al. 2016). Even terrestrial plant material, especially 
mangrove leaves and propagules (or seeds), can feature 
prominently in green turtle diets (Arthur et al. 2009; Lim-
pus and Limpus 2000; Nagaoka et al. 2012). Contrary to the 
long-held belief that green turtles are strictly herbivorous, 
however, animal matter ranging from accidentally ingested 
small hydrozoans and bryozoans that encrust plant material 
to purposefully consumed sponges (Mortimer 1981) and 
significant amounts of gelatinous macrozooplankton (e.g., 
Amorocho and Reina 2007; Burkholder et al. 2011; Fukuoka 
et al. 2019; González Carman et al. 2014; Quiñones et al. 
2010) have been reported in the diet of both juvenile and 
adult green turtles.

Food selection may correlate with differences in intestinal 
microflora (Bjorndal 1980), which varies as turtles transi-
tion from pelagic to neritic habitats (Campos et al. 2018; 
Price 2016) and with state of health (Ahasan et al. 2017). 
It follows that intestinal microflora typical of individuals 
that feed on seagrass likely differs from that of algivores 
and they are less efficient at digesting algae and vice versa 
(Bjorndal et al. 1991), but diets comprising large amounts 
of both seagrass and algae are also sometimes reported (e.g., 
López-Mendilaharsu et al. 2005; Shimada et al. 2014; Whit-
ing et al. 2014). Stable isotope studies have been used to 
show that individuals in the same area can have long-term 
dietary preferences (Thomson et al. 2018). On the other 
hand, abrupt shifts between algae, seagrass and mangrove 
diets have been observed by examining the guts of individual 
green turtles (Brand et al. 1999; Arthur et al. 2009) and may 
simply reflect the food items available that yield the highest 
nutritional value with minimal search and handling costs 
(Bjorndal 1997).

Foraging patterns of adult turtles can be disrupted by 
reproduction. Appropriate forage is often lacking during 
long-distance migrations between feeding and breeding 

grounds (Carr 1975) and at some sites is not available in the 
vicinity of the nesting beach (e.g., at Tortuguero, Costa Rica 
and Ascension Island, South Atlantic Ocean). Guts of migrat-
ing green turtles captured between seagrass pastures in Nica-
ragua and the Tortuguero nesting beach contained only small 
quantities of low grade forage (Mortimer 1982) as did those 
of nesting females examined at Tortuguero (Meylan 1978), 
which contained water hyacinth debris and flotsam deposited 
in the river mouth (Mortimer 1982). At Ascension, the guts 
of females were empty; while in Northern Cyprus, a nesting 
area where there is abundant seagrass, females were found to 
have guts packed with seagrass (Hays et al. 2002). Breeding 
Ascension turtles sometimes move in to eat refuse dumped 
from ships or shore (Carr et al. 1974) suggesting that their 
fast may not be voluntary. At Raine Island Australia, analysis 
of the gut contents of 101 nesting females killed on shore by 
heat stress found that 60% of the guts were completely empty, 
and the remainder showed evidence of only intermittent for-
aging, mostly on calcareous algae and animal matter includ-
ing sea anemones and jellyfish (Tucker and Read 2001). The 
authors did not describe availability of forage near Raine 
Island, so it is unclear whether the restricted food intake was 
determined by habitat, or as Bjorndal (1997) suggests, that 
occupation of visceral space by female reproductive tissues 
may preclude or limit continuous feeding. To date, however, 
no published studies have evaluated the feeding behaviour 
of both breeding males and females at nesting sites where 
abundant forage was available.

Here, we investigate green turtle foraging ecology at three 
Western Indian Ocean coral reef atolls in the Republic of 
Seychelles, in the context of what is known globally about 
the diet of immature and adult green turtles (Esteban et al. 
2019 Mar Biol in review). Specifically, we (1) examine 
green turtle gut contents (oesophagus and stomach) from 
adult male turtles and breeding and non-breeding females, 
and we compare the amount and relative importance of food 
items encountered; (2) examine the oesophageal contents 
of 8 otherwise apparently healthy immature green turtles 
found dead at Desroches atoll; and (3) assess the habitat at 
locations where adult turtles were captured in 1982–1983 
and which satellite tracking later identified as green turtle 
foraging habitat in 2016. By combining these results, the 
study will improve knowledge of green turtle habitat require-
ments in the Western Indian Ocean to help guide regional 
conservation management.

Materials and methods

Study site and sample collection

This study focuses on the diet composition of green turtles 
at three sites (Cosmoledo, Farquhar and Desroches atolls) 
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(Fig. 1) in the outer islands of the Republic of Seychelles. 
All three atolls host the following life stages of green tur-
tles: adult males and females that mate and lay eggs at the 
atolls (Mortimer 1984); adult females that nest at distant 
sites but use the atoll as adult foraging habitat during inter-
vals between nesting seasons (Bourjea et al. 2015; Christian-
sen et al. 2017; GC Hays and N Esteban unpubl data); and 
immature and subadult turtles (> 35 cm carapace length) that 
use the atoll as developmental habitat. The atolls probably 
also provide adult foraging habitat for males that breed at 
distant sites, but this is not yet confirmed. All three atolls 
feature expanses of seagrass habitat inside and outside their 
fringing reefs. These are dominated by the following spe-
cies: Cosmoledo, Thalassodendron ciliatum, Thalassia hem-
prichii, Cymodocea rotundata, and Cymodocea serrulata; 
Farquhar, T. ciliatum and T. hemprichii; and Desroches, T. 
ciliatum, T. hemprichii, and Halophila ovalis, as well as 
Syringodium isoetifolium (Kalugina-Gutnik et al. 1992; JA 
Mortimer and M Morgan unpubl data). Associations of sea-
grass and macroalgae occur, the most common involving the 
calcareous algae, Halimeda spp (see Kalugina-Gutnik et al. 
1992 for descriptions and list of species).

During 1982–1983, green turtles were hunted at Cos-
moledo and Farquhar atolls for human consumption. Adult 
males were legally harpooned at sea, usually within or just 
beyond the reef crest of the atoll. Some males were kept 
alive and transported (~ 800–1100 km) to the human popula-
tion centres of the Inner Islands, while others were slaugh-
tered on site and their meat was salted (Mortimer 1984). In 

addition, nesting females whose fatty meat was considered 
superior to that of the males were occasionally taken (ille-
gally) from the nesting beach for local consumption. No tur-
tles were killed specifically to provide samples for this study.

The digestive tract of each turtle was dissected on site 
after slaughter and all food items were removed from the 
oesophagus and upper cardiac region of the stomach at the 
point where food had not yet been modified by digestion 
(defined as gut throughout this study). In all, 46 samples 
(Cosmoledo, n = 12; Farquhar, n = 34) were collected 
along with the following data: location of capture (marked 
on Admiralty Chart), CCL (cm), and sex (Table 1). All the 
males were adults with long tails (Mortimer 1984) and many 
of them had been harpooned while mating. Reproductive 
(gravid) females were identified by ovarian follicles > 2 cm 
(Owens 1980), but most breeding females were captured on 
the nesting beach. The samples were initially fixed in 5% 
formalin in sea water for 24 h and subsequently transferred 
to 70% ethanol for preservation before analysis. An absence 
of indeterminate slurry suggests that our samples were well 
preserved despite their long storage.

During 2016–2018, at Desroches atoll, Island Conserva-
tion Society (ICS) personnel collected gut content samples 
from dead immature green turtles stranded on the beach 
(n = 8). They all appeared to be in good health prior to 
stranding and their guts were packed full of food (seagrass). 
Cause of death is unknown but may have resulted from 
drowning subsequent to entanglement in fishing gear. CCL 
was measured and a small food sample from a single point 

Fig. 1  The location of study 
sites: a Location of Republic 
of Seychelles in the Western 
Indian Ocean. b Three atolls 
(indicated by red dots) within 
the Seychelles Exclusive Eco-
nomic Zone (shown in white) 
where samples were collected. 
c Comparison of capture loca-
tions of green turtles sampled 
in 1982–1983 (red open circles) 
with Fastloc-GPS locations 
(black open circles) indicat-
ing core feeding sites (within 
and outside of the atoll rim) 
of post-nesting female green 
turtle satellite tracked from 
Diego Garcia atoll in Chagos 
Archipelago (location shown 
on Fig. 1a) to Farquhar atoll 
(location indicated by black 
box on Fig. 1b) in 2015–2016 
Bathymetry map source: Esri, 
DeLorme, GEBCO, NOAA 
NGDC, and other contributors
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along the full oesophagus was collected from each, frozen, 
and stored in 70% ethanol prior to analysis.

Diet analysis

Processing and identification of samples took place at 
Swansea University. Samples were filtered, blotted dry, and 
wet mass measured to the nearest 0.01 g. The 1982–1983 
Cosmoledo/Farquhar samples were subsampled, but the 
2016–2018 Desroches samples were analysed fully given 
their small size. A stratified sub-sampling protocol was fol-
lowed to ensure representation of the whole sample: (1) 
large items were removed from sample for identification, 
(2) the remaining sample was mixed, spread out evenly and 
split into 10 equal subsamples in a gridded tray, (3) a ran-
dom number generator was used to randomly select each 
subsample for analysis to reduce bias, (4) for the first five 
samples, 50% of the sample was analysed, 10% at a time. No 
new dietary items were found after identifying specimens in 
the first two 10% subsamples. Remaining samples: two sub-
samples were analysed (20% of the original sample size).

Within each gut sample, dietary items were identified to 
the lowest taxonomic level using a dissecting microscope 
(Olympus SZX61, 0.7–11.5x with an SDF PLAPO 1XPF 
objective lens) and available identification guides, litera-
ture and websites (Lanyon 1986; Kalugina-Gutnik et al. 
1992; Waycott et al. 2004; WILD Singapore, 2016). To 
gain a positive identification of sponges, a small fragment 
was dissolved in sodium hypochlorite (NaOCI) to check for 
the presence of spicules. Photomicrographs were taken of 
all dietary items (Olympus UC30 3.2 Microscope Digital 
Camera attachment; Olympus cellSens imaging software) 
for subsequent verification of species. Dry mass of each 
taxon was weighed to the nearest 0.1 mg after oven drying 
for 24 h at 40 °C.

Identifying and ground‑truthing foraging locations 
at Farquhar Atoll

Two sets of data were used to identify green turtle forag-
ing locations at Farquhar atoll. The first entailed recording 
onto Admiralty Charts the locations where 27 green turtles 
were captured in 1982–1983 and then transferring those 
points to Google Earth. The second comprised day-time 

surfacing locations of a green turtle that had been equipped 
with a Fastloc-GPS Argos satellite tag after nesting on the 
island of Diego Garcia (7.42°S, 72.45°E) in the Chagos 
Archipelago (Esteban et al. 2017), and then tracked to its 
foraging grounds at Farquhar in 2016 (Fig. 1a, b). Fastloc-
GPS locations obtained from 4 or more satellites and with 
residual values of < 35 were examined (see Dujon et al. 2014 
for a description of Fastloc-GPS accuracy). The tracking 
data were analysed using ArcGIS 10.3 to identify locations 
(n =98) visited during local daytime [i.e., those positions 
recorded between 0900 and 1700 h local time (UTC + 4 h)].

During March 2016 and March 2018, as many of the day-
time Fastloc-GPS location points as possible were surveyed 
to assess benthic habitats. On 25 March 2016, 14 points 
situated outside the rim of the atoll were assessed in terms 
of depth and visible characteristics of the benthos, using a 
glass-bottomed bucket and the fathometer built into the small 
research skiff. Two years later, on 22–23 March 2018, benthic 
habitat at a sub-sample of Fastloc-GPS daytime locations 
(n =15), this time inside the lagoon, was ground-truthed and 
benthic features of the seagrass habitats were recorded using 
Seagrass-Watch monitoring protocols (www.seagr asswa tch.
org) for a distance of at least 20 m from each location. Sub-
strate type was assessed by placing quadrats (0.25 m2; n = 52, 
mean = 3.47 quadrats, range = 1–5 per site) at intervals of at 
least 10 m apart (estimated using fin kicks) and recording rel-
ative cover of broad benthic groups (seagrass, hard coral, soft 
coral, sponge, macroalgae, rock, rubble, dead coral, sand) 
and species composition. Care was taken to search under the 
seagrass canopy for any additional species. Depths at those 
sites were measured from the boat using a hand-held depth 
finder (HawkEye DT1H). Separate qualitative surveys of sea-
grass habitat were also conducted at various points around 
the inside of the lagoon to determine what other seagrass 
species and habitats occur at Farquhar.

Data analysis

Univariate analyses were performed in R version 3.3.3 (R 
Core Team 2017). To understand the relative importance of 
various species in the diet, the percent frequency of occur-
rence, percent biomass and an Index of Relative Importance 
(IRI) were calculated for each diet item/species (see von 
Brandis et al. 2014 for equation).

Table 1  Capture dates, locations 
and details (number, size, sex) 
of green turtles harvested in 
Republic of Seychelles

M male, F female, U unknown; immature

Location Latitude and Longitude Dates sampled Number Size Range 
(CCL, cm)

Mean ± SE (cm)

M F U

Cosmoledo 9.7088°S 47.5153°E 19 Jan–25 May 1982 4 8 – 93–117 109 ± 2.19
Farquhar 10.1881°S 51.1566°E 10 May–7 Oct 1983 23 10 1 72–115 103 ± 1.28
Desroches 5.6912°S 53.6671°E Jan 2016–Jan 2018 – – 8 48.5–71 63 ± 2.44

http://www.seagrasswatch.org
http://www.seagrasswatch.org
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To account for differences in gut fullness, the biomass of 
diet species was standardised. Diet items/species biomass % 
by location, sex, and breeding status (of females based on sta-
tus of the ovaries) were presented using the ggplot2 package 
(Wickham 2016). All means are presented with ± 1 SE. We 
conducted analysis of differences in green turtle diet compo-
sition by sex, breeding status and location using a two-way 
nested ANOSIM in Primer v7 (Clarke and Warwick 1994).

Diet composition data (percentages based on biomass) 
were arcsine-square-root-transformed for analysis. A 
Mann–Whitney U was used to investigate the difference 
between the biomass of seagrass consumed by “gravid 
females” and by “males and non-breeding females”. A one-
way ANOVA was used to investigate the difference in gut 
weight between “gravid females”, “non-breeding females” 
and “males”. The Tukey test was used to compare mean 
gut content wet weight of males, gravid females, and non-
breeding females.

Results

Diet analysis

Green turtle diet was primarily plant based in the Sey-
chelles. At Cosmoledo and Farquhar atolls, seagrass rep-
resented an average of 81% of the diet (SE = 4%; n = 46). 
In 37 individuals (80.4%) seagrass, mostly Thalassoden-
dron ciliatum, dominated; in 1 turtle (2.2%) macroalgae 
dominated; and 8 turtles (17.4%) were characterised by 
mixed diets. No significant difference (p = 0.605) was evi-
dent between the diets of males (n = 26) and non-breeding 
females (n = 2); so, data for these two groups were pooled 
for subsequent analysis. The diet of non-breeding females 
was not considered separately due to the low sample size.

Dietary items were categorised into 8 dietary compo-
nent groups: seagrass, macroalgae, sponges, bryozoans, 
cnidarians (mostly epiphytic), miscellaneous invertebrates, 
substrate, and marine debris (Table 2). Seagrass accounted 
for the biomass of almost all of the gut contents ana-
lysed of adult males and non-breeding females (95 ± 2%; 
mean ± SE; n = 28), but only 58 ± 8% (mean ± SE; n = 17) 
of the diet of gravid breeding females (Fig. 3a, Table 2). 
This difference was statistically significant (Mann–Whit-
ney U test, U = 62, N1 = 28, N2 = 17, p < 0.0001). When 
adult males (n =26) and non-breeding females (n =2) were 
considered separately, seagrass accounted for 95 ± 2% and 
100 ± 0% (mean ± SE) of the diet, respectively. In contrast, 
the gravid female diet included relatively large amounts of 
substrate (14 ± 5%; mean ± SE) and macroalgae (13 ± 3%; 
mean ± SE). Halimeda spp were disproportionately abun-
dant (35%) in gravid females (n = 6), but absent from the 
guts of adult males and non-breeding females. Cnidarians 
(mainly epiphytic hydrozoans) and sponges occurred fre-
quently but with low biomass across all turtle groups.

In terms of frequency of occurrence, seagrass was 
encountered in all turtles (100%). In male and non-breed-
ing females, epiphytic cnidarians (75%), macroalgae 
(43%), sponge (39%), and marine debris (32%) were all 
ingested frequently, with other dietary components less 
so. In the diet of gravid females, most dietary components 
occurred with relatively high frequency: macroalgae 
(82%), sponges (82%), substrate (71%), bryozoans (65%), 
cnidarians (41%) and marine debris (35%).

The IRI of dietary items included 26 dietary items: 
15 at Cosmoledo, 25 at Farquhar and 7 at Desroches 
(Table 3). Seagrass was the most important dietary item 
at all sites and amongst all groups of turtles. This was 
mostly T. ciliatum but in some cases T. hemprichii. Small 
amounts of Halodule uninervis and Halophila stipulacea 

Table 2  Key diet composition 
of male and non-breeding 
female (n = 28) and gravid 
female (n = 17) green turtles 
in Seychelles. Frequency of 
occurrence (FO) of dietary 
components present in turtles 
(1982–1983) and relative 
biomass of dietary components 
found in the gut contents

* < 0.1 mg (trace)
a Gastropoda, Crustacea, Polychaeta, Holothuroidea
b Plastic, glass, other

Diet groups Male and non-breeding female Gravid female

FO Relative proportion of biomass FO Relative proportion of biomass

Mean ± SE Min Max Mean ± SE Min Max

Seagrasses 100 95 2 40 100 100 58 8 1 100
Macroalgae 43 2 2 0 57 82 15 3 0 35
Sponges 39 2 1 0 24 82 7 2 0 29
Bryozoans 4 * * 0 0 65 3 1 0 20
Cnidarians 75 * * 0 0 41 * * 0 2
Invertebratesa 7 * * 0 1 12 * * 0 0
Substrate 4 * * 0 0 71 15 6 0 84
Marine  debrisb 32 * * 0 11 35 1 1 0 19
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were also recorded. These results indicate consistency in 
green turtle diet at three sites separated from each other by 
400–825 km in the Western Indian Ocean. Gravid female 
diets had lower IRI seagrass scores than those of male, 
non-breeding female, and immature turtles. Halimeda 
spp featured prominently in the diet of gravid females at 
Cosmoledo (IRI = 15), while calcium carbonate substrate 
was prominent in the diet of gravid females at Farquhar 
(IRI = 12).

Differences in gut content biomass between “breeding 
females” and “males and non-breeding females” were sta-
tistically significant by a two-way nested ANOSIM (global 
r = 0.569, p < 0.01) (Fig. 2). Diet compositions at Cosmoledo 
and Farquhar were similar (global r = 0, p = 0.667). Gravid 
female gut contents were 53% less in volume and more 
varied (seven dietary component groups including mac-
roalgae, calcium carbonate substrate, seagrass) compared 

to male and non-breeding female guts (only three dietary 
component groups found > 0.1 mg despite food availability) 
(Table 2). Wet weights of the gut samples differed signifi-
cantly (ANOVA, F2,42 = 11.51, p < 0.001) by sex and female 
breeding status. Breeding female (n =17) gut biomass was 
significantly lower than those of males (p < 0.001; n =26) 
and non-breeding females (p < 0.05; n =2) (Fig. 2).

Figure 3 compares the contributions made by the eight 
dietary component groups and by individual species of 
seagrass to the diets of breeding females, males, and non-
breeding females at Cosmoledo and Farquhar. Seagrass was 
the most abundant dietary component in all turtle groups 
(Fig. 3a) and at both sites (Fig. 3c). T. ciliatum was the 
dominant seagrass in the diets of both males and breeding 
females, but T. hemprichii was dominant in the diets of non-
breeding females (n =2) (Fig. 3b).

Table 3  Index of Relative 
Importance (IRI) of dietary 
items in gut contents of green 
turtles captured in 1982–1983 
at Cosmoledo atoll (C) (n =7 
gravid females (G); n =5 males 
and non-breeding females (O) 
and Farquhar atoll (F) [n =10 
gravid females (G); n =23 males 
and non-breeding females (O); 
n =1 immature (I)], and in 
2016–2018 at Desroches atoll 
(D) [n =8 immature (I)]

x unidentified species, – none

Kingdom Phylum Genus species IRI (sites)

C F D

G O G O I I

Plantae
 Tracheophyta Thalassodendron ciliatum 51 40 58 74 88 92

Halodule uninervis < 1 < 1 – – – –
Thalassia hemprichii 4 48 <1 4 – –
Halophila stipulacea – – – < 1 – –

 Chlorophyta Halimeda spp 15 – < 1 – – < 1
Caulerpa spp – – 2 < 1 12 –
Caulerpa serrulata – – < 1 – – –

 Rhodophyta x – – – < 1 – –
Hypnea esperi < 1 – – < 1 – –
Heterosiphonia spp – – < 1 < 1 – –

 Phaeophyta Turbinaria sp – – 1 – – –
 Macroalgae x 3 – 1 1 – < 1

Animalia
 Sponges x 2 < 1 6 1 – 4
 Cnidaria x – < 1 – < 1 – –

x < 1 < 1 < 1 < 1 – –
 Bryozoa x 2 < 1 1 – – < 1
 Echinodermata x < 1 – < 1 – – –
 Annelida x – – – < 1 – < 1
 Crustacea x – – – < 1 – –

Ocypode cordimanus – – – < 1 – –
 Mollusca x – – – < 1 – –

Other
 Glass < 1 – – < 1 – –
 Plastic < 1 < 1 < 1 < 1 <1 –
 Debris – – < 1 < 1 – –
 Shell < 1 – < 1 – –
 Substrate 3 – 12 < 1 – < 1
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In terms of biomass, T. ciliatum was the most abundant 
seagrass in the guts of turtles at both Farquhar (92%) and 
Cosmoledo (76%), followed by T. hemprichii which was 
relatively more abundant in guts from Cosmoledo (23%) 
than Farquhar (8%) (Fig. 3d).

Foraging habitat assessment at Farquhar Atoll

Capture locations of 27 turtles sampled at Farquhar in 
1982–1983 are shown by red circles in Fig. 1c. For safety, 
fishermen rarely operated outside the atoll rim; so, most 
capture locations are concentrated along the western perim-
eter of the atoll inside the lagoon, especially near the shal-
low entrance to the lagoon where turtles (but not boats) can 
pass at high tide. The daytime locations of the green turtle 
equipped with a Fastloc-GPS Argos satellite tag are indi-
cated by black circles (n = 99) in Fig. 1c. The majority of 
these locations overlap and are close to the atoll rim (n = 93); 
whilst only a few locations are at a mean distance of 1.0 km 
from the atoll rim (SE = 6.44, range = 0.49–2.58 km; n = 6). 
These locations span a range of depths both inside and 
outside the lagoon. Sites outside the atoll rim, surveyed in 

Fig. 2  Comparison of the amount of food found in the guts of breed-
ing females, non-breeding females, and males. Wet weight (g) was 
recorded for each gut sample. Bold horizontal lines indicate median, 
boxes delineate upper and lower quartiles and whiskers define range. 
Outliers are plotted as separate points

Fig. 3  Comparison of green turtle diets by sex and female breeding 
status [breeding females (yellow; n = 17); non-breeding females (red; 
n = 2); males (blue; n = 26)] and site [Cosmoledo (black; n = 12); Far-
quhar (white; n = 34)]. Relative contribution of eight dietary com-
ponent groups by a sex and female breeding status and by c site. 
Relative contribution of three seagrass species [Thalassodendron cili-
atum (Tc), Thalassia hemprichii (Th) and Halodule uninervis (Hu)] 

by b sex and female breeding status and by d site. Mean values are 
shown with positive standard error bars. Dietary component groups: 
seagrasses (Sg), macroalgae (Ma), sponges (Sp), bryozoans (Br), 
cnidaria (Cn), invertebrates (In), substrate (Su) and debris (De). Hal-
ophila stipulacea not included, as weight of the fragment (n =1) was 
negligible



 Marine Biology (2019) 166:135

1 3

135 Page 8 of 12

March 2016, were relatively deep (mean = 36.6 m; SE = 7.5; 
range = 8.8–90.5 m; n = 14) and, in most cases, the seabed 
was not visible through the glass-bottomed bucket. Sites 
within the lagoon, surveyed in March 2018, were generally 
shallow (mean = 2.7 m; SE = 0.2; n = 15). Seagrass was 
present at 100% of those sites with a high mean seagrass 
cover (76.9%; SE = 3.9; n = 13). T. ciliatum was the only 
seagrass species recorded, with a mean canopy height of 
25.8 cm (SE = 1.3). Macroalgae were recorded at only four 
sites (mean cover = 0.7%; SE = 0.5; n = 14). Substrate colo-
nised by seagrass included rocks, rubble, dead coral, sponge 
and sand. Seagrass communities observed elsewhere around 
the Farquhar lagoon were also dominated by T. ciliatum, but 
included small patches of T. hemprichii, which in most cases 
appeared to have been cropped by turtles.

Discussion

At sites in the Republic of Seychelles, we report an almost 
exclusive diet of seagrass for green turtles. Seagrass biomass 
represented 95% of the diet of the adults sampled in our 
study (n = 28), excluding the gravid females (n = 17). This 
figure is amongst the highest reported in the world (Esteban 
et al. 2019 Mar Biol in review). All countries in the Western 
Indian Ocean host extensive seagrass meadows (Gullström 
et al. 2002); so, it is likely that seagrass is an important diet 
component for green turtles throughout this largely under-
studied region. Other comparable sites in the Western Indian 
Ocean, where seagrass exceeds 90% of the diet, include the 
United Arab Emirates (Hasbún et al. 2000), Yemen (Hirth 
et al. 1973) and Aldabra atoll in Seychelles (Frazier 1971). A 
high prevalence of seagrass has also been reported in Oman 
(Ross 1985). These findings have been supported by recent 
studies in Mayotte, Western Indian Ocean where green tur-
tles graze on an assemblage of eight seagrass species com-
monly found there (Ballorain et al. 2010).

The most abundant seagrass species recorded in the 
guts of the Seychelles turtles at Cosmoledo, Farquhar and 
Desroches atolls were T. ciliatum and T. hemprichii, which 
is not surprising as these were the dominant seagrass spe-
cies recorded at those sites by Kalugina-Gutnik et al. (1992). 
T. ciliatum is particularly abundant in the outer islands of 
Seychelles, forming extensive monospecific meadows, 
especially in deeper localities on sandy bottoms, coral reefs 
and sand-covered rocks (Short et al. 2010). Early studies 
of green turtles at Aldabra atoll in Seychelles recorded T. 
ciliatum as the primary diet component along with small 
amounts of T. hemprichii and macroalgae (Frazier 1971). 
The importance of different seagrass species for green turtle 
diet in Farquhar atoll suggests a relative preference for T. 
hemprichii (over T. ciliatum) given its scarcity in seagrass 
habitats (current study). Although T. ciliatum formed the 

bulk of the turtle diet, anecdotal accounts from Seychellois 
turtle hunters (Mortimer, pers comm) indicate that turtles 
prefer other seagrass species if they are available. Neutral 
Detergent Fibre (NDF) is a measurement of most structural 
components in plant cells and it is possible that NDF in T. 
ciliatum is higher than other seagrasses, indicating increased 
difficulty for digestion, although data for T. ciliatum are not 
available (Trevathan-Tackett et al. 2017). Elsewhere in the 
Western Indian Ocean, the importance of T. ciliatum to the 
diet is variable: at Mayotte it does not feature prominently in 
the diet (Ballorain et al. 2010); while green turtles certainly 
forage on T. ciliatum in the monospecific seagrass meadows 
in the Great Chagos Bank (Esteban et al. 2018).

It is noteworthy that some daytime locations for tracked 
turtles were deep, being up to 90 m. The foraging site in 
Farquhar atoll is in the vicinity of a very steep drop-off 
(< 1 km between atoll rim and 500 m depth; Stoddart and 
Poore 1970) which is a relatively small area for a proficient 
swimmer with daytime home ranges of 19 km2 (95% KUD, 
SD = 15.78, n = 6) in the Seychelles (Christiansen et al. 
2017). Likewise, we have shown previously that turtles 
forage in relatively deep areas on the Great Chagos Bank 
(29 m) where in situ surveys with divers and drop-down 
cameras have confirmed extensive seagrass beds (Esteban 
et al. 2018). Taken together, these findings add to the grow-
ing evidence that, in the Indian Ocean, seagrass may be 
found much deeper than previously assumed. In support of 
this conclusion, Kalugina-Gutnik et al. (1992) used SCUBA 
to survey distribution of seagrass and macroalgae in the Sey-
chelles, and reported seagrass growing to depths of 37 m; 
and, on the Saya de Malha Bank, the EAF-Nansen Leg 2.1 
(May 2018) expedition also recorded T. ciliatum at 37 m and 
Halophila decipiens at 70 m (Sundy Ramah, pers. comm.). 
We report that foraging sites of one satellite tracked indi-
vidual in areas of extensive nearly monospecific beds of T. 
ciliatum in 2016 coincided with capture locations of > 75% 
of turtles captured in 1983, indicating long-term health of 
seagrass habitat in Farquhar atoll but possibly underrep-
resenting the overall foraging habitat size and distribution 
around the atoll.

Our regional case study presents evidence that the diet 
of gravid females differs from that of adult males (breeding 
and non-breeding) and non-breeding females. We present 
the first findings that compare the diets of breeding males 
and gravid female green turtles at sites where abundant 
benthic forage occurs adjacent to nesting beaches. Previous 
studies that recorded relatively empty guts and low-quality 
diets of gravid female green turtles (Carr et al. 1974; Mor-
timer 1982; Tucker and Read 2001) did not confirm whether 
reproductive status or forage availability caused the females 
to fast. At both Cosmoledo and Farquhar, the food present 
in the gut of gravid females weighed significantly less and 
was also more variable than that of both adult males and 
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non-breeding females. Due to the low sample size of non-
breeding females, this observation clearly deserves further 
investigation.

We conclude that the restricted and unusual diets of 
gravid female green turtles are not driven by forage avail-
ability but more likely by a combination of other factors. 
During the inter-nesting period, green turtles often exhibit 
restricted movements between clutch depositions (Esteban 
et al. 2017). It may be that resting and conserving energy in 
locations inaccessible to the unwanted attentions of court-
ing males and predators while the next egg clutch matures 
may be more important than foraging. It may also be that 
the maturing clutches of eggs take up so much volume 
inside a turtle that there is no room for a full gut. Clutch 
size scales with body size in sea turtles, suggesting that sea 
turtles lay the largest clutch of eggs they can fit inside their 
bodies (Hays and Speakman 1991). Another possibility is 
that gravid females have peculiar dietary needs. The guts 
of males and non-breeding females foraging on the sea-
grass flats of Nicaragua (Mortimer 1981) and those of adult 
males and non-breeding females in the present study con-
tained little or no calcareous matter. In contrast, relatively 
large amounts of calcareous material (including the calcar-
eous algae (Halimeda spp.), and/or calcareous substrates) 
were ingested by gravid females in the present study and 
at Raine Island (Tucker and Read 2001), by gravid green 
turtles migrating to the Tortuguero nesting grounds (Mor-
timer 1981, 1982), by gravid hawksbill turtles (Eretmo-
chelys imbricata) in the Caribbean (Meylan 1984) and by 
gravid desert tortoises (Gopherus agassizii) (Marlow and 
Tollestrup 1982). Tucker and Read (2001) hypothesised that 
ingested calcareous material might supply calcium for egg-
shells, restore depleted calcium reserves in breeding females, 
or neutralise stomach acid in fasting animals. This expla-
nation is reasonable given that gravid female green turtles 
may lay up to ten egg clutches at two-week intervals during 
a single nesting season (Esteban et al. 2017) and the eggs 
of each clutch need to be shelled on site just prior to being 
laid. Given the upward trends in green turtle populations in 
the Western Indian Ocean, there is a need to conserve and 
monitor seagrass habitats in the context of changing green 
turtle population densities. Green turtle foraging locations 
can be indicators of healthy ecosystems that warrant inclu-
sion in MPA proposals (Scott et al. 2012). The Republic of 
Seychelles is currently developing a comprehensive Marine 
Spatial Plan (Government of Seychelles 2017) and has com-
mitted protection for up to 30% of its territorial waters to 
ensure representative species and habitats have long-term 
protection to improve resilience of coastal ecosystems in 
a changing climate. Cosmoledo, Farquhar and Desroches 
atolls all feature prominently in this zoning plan. In the sam-
ples we analysed from the Seychelles, it is noteworthy that 
while the proportion of seagrass in the diet varied across 

individuals, all individuals had consumed at least some sea-
grass. This observation adds support for the use of green 
turtles as indicators of seagrass habitats, reiterating the value 
of remotely tracking green turtles to help identify hitherto 
unknown seagrass beds (Hays et al. 2018). Finally, regional 
satellite tracking studies (Hays et al. 2010, 2014; Bourjea 
et al. 2015; Christiansen et al. 2017) combined with green 
turtle foraging ecology studies help resource managers to 
identify critical habitats in need of long-term protection 
and enable a better understanding of foraging hotspots and 
regional connectivity.
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