2,400 research outputs found

    SUPPLY CHAINS MAY DELIVER SAFER TOMATOES AND STRAWBERRIES

    Get PDF
    Food Consumption/Nutrition/Food Safety,

    Heat transport and flow structure in rotating Rayleigh-B\'enard convection

    Get PDF
    Here we summarize the results from our direct numerical simulations (DNS) and experimental measurements on rotating Rayleigh-B\'enard (RB) convection. Our experiments and simulations are performed in cylindrical samples with an aspect ratio \Gamma varying from 1/2 to 2. Here \Gamma=D/L, where D and L are the diameter and height of the sample, respectively. When the rotation rate is increased, while a fixed temperature difference between the hot bottom and cold top plate is maintained, a sharp increase in the heat transfer is observed before the heat transfer drops drastically at stronger rotation rates. Here we focus on the question of how the heat transfer enhancement with respect to the non-rotating case depends on the Rayleigh number Ra, the Prandtl number Pr, and the rotation rate, indicated by the Rossby number Ro. Special attention will be given to the influence of the aspect ratio on the rotation rate that is required to get heat transport enhancement. In addition, we will discuss the relation between the heat transfer and the large scale flow structures that are formed in the different regimes of rotating RB convection and how the different regimes can be identified in experiments and simulations.Comment: 12 pages, 10 figure

    A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms

    Get PDF
    In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned inflow.Comment: 13 pages, 5 figure

    Radial boundary layer structure and Nusselt number in Rayleigh-Benard convection

    Get PDF
    Results from direct numerical simulations for three dimensional Rayleigh-Benard convection in a cylindrical cell of aspect ratio 1/2 and Pr=0.7 are presented. They span five decades of Ra from 2×1062\times 10^6 to 2×10112 \times10^{11}. Good numerical resolution with grid spacing \sim Kolmogorov scale turns out to be crucial to accurately calculate the Nusselt number, which is in good agreement with the experimental data by Niemela et al., Nature, 404, 837 (2000). In underresolved simulations the hot (cold) plumes travel further from the bottom (top) plate than in the fully resolved case, because the thermal dissipation close to the sidewall (where the grid cells are largest) is insufficient. We compared the fully resolved thermal boundary layer profile with the Prandtl-Blasius profile. We find that the boundary layer profile is closer to the Prandtl Blasius profile at the cylinder axis than close to the sidewall, due to rising plumes in that region.Comment: 10 pages, 6 figure

    Sidewall effects in Rayleigh-B\'enard convection

    Get PDF
    We investigate the influence of the temperature boundary conditions at the sidewall on the heat transport in Rayleigh-B\'enard (RB) convection using direct numerical simulations. For relatively low Rayleigh numbers Ra the heat transport is higher when the sidewall is isothermal, kept at a temperature Tc+Δ/2T_c+\Delta/2 (where Δ\Delta is the temperature difference between the horizontal plates and TcT_c the temperature of the cold plate), than when the sidewall is adiabatic. The reason is that in the former case part of the heat current avoids the thermal resistance of the fluid layer by escaping through the sidewall that acts as a short-circuit. For higher Ra the bulk becomes more isothermal and this reduces the heat current through the sidewall. Therefore the heat flux in a cell with an isothermal sidewall converges to the value obtained with an adiabatic sidewall for high enough Ra (1010\simeq 10^{10}). However, when the sidewall temperature deviates from Tc+Δ/2T_c+\Delta/2 the heat transport at the bottom and top plates is different from the value obtained using an adiabatic sidewall. In this case the difference does not decrease with increasing Ra thus indicating that the ambient temperature of the experimental apparatus can influence the heat transfer. A similar behavior is observed when only a very small sidewall region close to the horizontal plates is kept isothermal, while the rest of the sidewall is adiabatic. The reason is that in the region closest to the horizontal plates the temperature difference between the fluid and the sidewall is highest. This suggests that one should be careful with the placement of thermal shields outside the fluid sample to minimize spurious heat currents.Comment: 27 pages, 16 figure

    Epitaxial designs for maximizing efficiency in resonant tunnelling diode based terahertz emitters

    Get PDF
    We discuss the modelling of high current density InGaAs/AlAs/InP resonant tunneling diodes to maximize their efficiency as THz emitters. A figure of merit which contributes to the wall plug efficiency, the intrinsic resonator efficiency, is used for the development of epitaxial designs. With the contribution of key parameters identified, we analyze the limitations of accumulated stress to assess the manufacturability of such designs. Optimal epitaxial designs are revealed, utilizing thin barriers, with a wide and shallow quantum well that satisfies the strained layer epitaxy constraint. We then assess the advantages to epitaxial perfection and electrical characteristics provided by devices with a narrow InAs sub-well inside a lattice-matched InGaAs alloy. These new structures will assist in the realization of the next-generation submillimeter emitters

    Generalized coupled wake boundary layer model: applications and comparisons with field and LES data for two wind-farms

    Get PDF
    We describe a generalization of the Coupled Wake Boundary Layer (CWBL) model for wind-farms that can be used to evaluate the performance of wind-farms under arbitrary wind inflow directions whereas the original CWBL model (Stevens et al., J. Renewable and Sustainable Energy 7, 023115 (2015)) focused on aligned or staggered wind-farms. The generalized CWBL approach combines an analytical Jensen wake model with a "top-down" boundary layer model coupled through an iterative determination of the wake expansion coefficient and an effective wake coverage area for which the velocity at hub-height obtained using both models converges in the "deep-array" portion (fully developed region) of the wind-farm. The approach accounts for the effect of the wind direction by enforcing the coupling for each wind direction. Here we present detailed comparisons of model predictions with LES results and field measurements for the Horns Rev and Nysted wind-farms operating over a wide range of wind inflow directions. Our results demonstrate that two-way coupling between the Jensen wake model and a "top-down" model enables the generalized CWBL model to predict the "deep-array" performance of a wind-farm better than the Jensen wake model alone. The results also show that the new generalization allows us to study a much larger class of wind-farms than the original CWBL model, which increases the utility of the approach for wind-farm designers.Comment: 17 pages, 11 figure

    FLORIDA DAIRY MARKETING COOPERATIVES' TRANSFER COST ASSOCIATED WITH NON-UNIFORM DELIVERY SCHEDULES

    Get PDF
    The economic basis for alternative delivery schedules between Florida Dairy Marketing Cooperatives (FDMCs) and fluid milk processors are analyzed, and the costs and benefits of improved coordination between these two market stages are highlighted. The additional costs incurred by FDMCs were they to switch from a uniform delivery schedule to various non-uniform delivery schedules are discussed. The seven-day uniform delivery schedule with the 0.25discountschemeontotalvolumedecreasesFDMCsA^netrevenuesby0.25 discount scheme on total volume decreases FDMCs'Â’ net revenues by 0.1433 per hundredweight (cwt), compared to a five-day delivery schedule with no price discounts.Agribusiness,

    Modeling space-time correlations of velocity fluctuations in wind farms

    Get PDF
    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.Comment: Submitted to Wind Energ

    Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection

    Get PDF
    In thermal convection, roughness is often used as a means to enhance heat transport, expressed in Nusselt number. Yet there is no consensus on whether the Nusselt vs. Rayleigh number scaling exponent (NuRaβ\mathrm{Nu} \sim \mathrm{Ra}^\beta) increases or remains unchanged. Here we numerically investigate turbulent Rayleigh-B\'enard convection over rough plates in two dimensions, up to Ra=1012\mathrm{Ra}=10^{12}. Varying the height and wavelength of the roughness elements with over 200 combinations, we reveal the existence of two universal regimes. In the first regime, the local effective scaling exponent can reach up to 1/2. However, this cannot be explained as the attainment of the so-called ultimate regime as suggested in previous studies, because a further increase in Ra\mathrm{Ra} leads to the second regime, in which the scaling saturates back to a value close to the smooth case. Counterintuitively, the transition from the first to the second regime corresponds to the competition between bulk and boundary layer flow: from the bulk-dominated regime back to the classical boundary-layer-controlled regime. Our study clearly demonstrates that the local 1/21/2 scaling does not signal the onset of asymptotic ultimate thermal convection.Comment: Submitted, 11 pages, 5figur
    corecore