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We investigate the influence of the temperature boundary conditions at the sidewall
on the heat transport in Rayleigh–Bénard (RB) convection using direct numerical
simulations. For relatively low Rayleigh numbers Ra the heat transport is higher
when the sidewall is isothermal, kept at a temperature Tc + 1/2 (where 1 is the
temperature difference between the horizontal plates and Tc the temperature of the
cold plate), than when the sidewall is adiabatic. The reason is that in the former
case part of the heat current avoids the thermal resistance of the fluid layer by
escaping through the sidewall that acts as a short-circuit. For higher Ra the bulk
becomes more isothermal and this reduces the heat current through the sidewall.
Therefore the heat flux in a cell with an isothermal sidewall converges to the value
obtained with an adiabatic sidewall for high enough Ra ('1010). However, when the
sidewall temperature deviates from Tc + 1/2 the heat transport at the bottom and
top plates is different from the value obtained using an adiabatic sidewall. In this
case the difference does not decrease with increasing Ra thus indicating that the
ambient temperature of the experimental apparatus can influence the heat transfer.
A similar behaviour is observed when only a very small sidewall region close to
the horizontal plates is kept isothermal, while the rest of the sidewall is adiabatic.
The reason is that in the region closest to the horizontal plates the temperature
difference between the fluid and the sidewall is highest. This suggests that one
should be careful with the placement of thermal shields outside the fluid sample to
minimize spurious heat currents. When the physical sidewall properties (thickness,
thermal conductivity and heat capacity) are considered the problem becomes one
of conjugate heat transfer and different behaviours are possible depending on the
sidewall properties and the temperature boundary condition on the ‘dry’ side. The
problem becomes even more complicated when the sidewall is shielded with additional
insulation or temperature-controlled surfaces; some particular examples are illustrated
and discussed. It has been observed that the sidewall temperature dynamics not only
affects the heat transfer but can also trigger a different mean flow state or change
the temperature fluctuations in the flow and this could explain some of the observed
differences between similar but not fully identical experiments.
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1. Introduction

The classical system to study turbulent heat transfer is Rayleigh–Bénard (RB)
convection, i.e. the motion of a fluid layer in a box heated from below and cooled
from above (Ahlers, Grossmann & Lohse 2009c). The system has many applications
in atmospheric and environmental physics, astrophysics and process technology. The
control parameters of the system are the Rayleigh number Ra = βg1L3/(κν), the
Prandtl number Pr = ν/κ and the aspect ratio Γ = D/L. Here, L and D are the
height and diameter of the fluid sample, g the gravitational acceleration, 1 the
temperature difference between the bottom and the top of the sample and β, ν and κ
the thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity
of the fluid, respectively. Nowadays most experimental and numerical results on the
Nusselt number Nu, the dimensionless heat transfer, agree up to Ra ≈ 2 × 1011 and
are in agreement with the description of the Grossmann–Lohse model (Grossmann &
Lohse 2000, 2001, 2002, 2004; Stevens, van der Poel & Lohse 2013). However, for
higher Ra the situation is more complex.

Most high-Ra experiments are performed in samples with aspect ratio Γ = 1/2 or
smaller (for example Γ = 0.23 in Roche et al. 2010) owing to the dependence of
Ra on L3 that, for a given volume of fluid, favours the increase of L at the expense
of D. Many of these experiments are performed with gaseous helium near its critical
point (Castaing et al. 1989; Niemela et al. 2000, 2001; Chavanne et al. 2001; Roche
et al. 2001a, 2002, 2010; Niemela & Sreenivasan 2006; Urban, Musilová & Skrbek
2011; Urban et al. 2012), and recently Funfschilling, Bodenschatz & Ahlers (2009),
Ahlers et al. (2009a), Ahlers, Funfschilling & Bodenschatz (2009b, 2011) and He
et al. (2012) performed measurements at room temperature using highly pressurized
gases. As is shown in figure 1 there are significant deviations among all experiments
for Ra& 2× 1011 and unfortunately there is no clear explanation for this disagreement.

The studies of Johnston & Doering (2009) and Stevens et al. (2011) showed that
the differences among the experiments cannot be explained by the fact that some
setups use a constant heat flux condition at the bottom plate instead of a constant
temperature condition, nor by the variations of Pr (Stevens et al. 2011). Recently,
evidence has been found that suggests that part of the deviation might be related
to the formation of different turbulent states in the high-Ra regime. Multiple states
in RB convection were observed by Roche et al. (2002), who found a bimodality
of Nu with 7 % difference between the two data sets. Subsequently, Chillà et al.
(2004) and Sun, Xi & Xia (2005b) showed that a finite tilt of the sample can cause
a transition between different flow states. Later Xi & Xia (2008) and Weiss & Ahlers
(2011) found that in a Γ = 1/2 sample the flow can be either in a single-roll state
or in a double-roll state, each with a specific heat transport. Recently, Niemela &
Sreenivasan (2010) found two Nu/Ra1/3 branches in a Γ = 1 sample. The high-Ra
branch is 20 % higher than the low-Ra branch. More recently, Ahlers and coworkers
(see Funfschilling et al. 2009; Ahlers et al. 2009a,b, 2011; He et al. 2012) found two
different branches in one experiment. In these experiments the difference between the
average temperature inside the cell and the temperature outside the cell determines
the state of the system. Also, in the experiments of Roche et al. (2010) two different
turbulent states were observed in a Γ = 0.23 sample in the range 1012 6Ra6 1013. In
addition, they showed that in the high-Ra regime the heat transport can very strongly
depend on the characteristics of the sidewall and the aspect ratio. Finally, van der Poel,
Stevens & Lohse (2011) showed, by two-dimensional RB simulations, that a different
flow organization can lead to significant differences in the heat transport.
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FIGURE 1. (Colour online) (a) Nu versus Ra. Unless stated otherwise the data are for
Γ = 1/2. The experimental data from Castaing et al. (1989) are with wall corrections.
The other experimental data are from Roche et al. (2010), Fleischer & Goldstein (2002),
Chaumat, Castaing & Chilla (2002), Chavanne et al. (2001), Niemela et al. (2000), Ahlers
et al. (2009a), Roche et al. (2010), Urban et al. (2011, 2012), the latter for Γ = 1; the
two sets of experimental results of He et al. (2012) are for TU − Tm .−3K (filled circles)
and TU − Tm &+2K (open circles). DNS results from Stevens, Verzicco & Lohse (2010),
Stevens, Lohse & Verzicco (2011) (squares) are also shown. (b) Zoom of the high-Ra
regime.

Owing to technical difficulties, the physical properties and boundary conditions
of the sidewall can only be controlled up to a certain degree in experiments. In
addition, testing different sidewall configurations is a very time-consuming task as
the entire sample has to be disassembled to replace the sidewall. On the other hand,
direct numerical simulations (DNS), even though they cannot reach as high Ra as
obtained in some experiments, offer a good possibility to study the influence of the
physical properties and the boundary conditions at the sidewall as they can be exactly
controlled. By comparing the differences between simulation of an RB sample with
an adiabatic sidewall and of RB samples with several other sidewall configurations
we aim to better understand the importance of sidewall effects.

The influence of the sidewall on the heat transport has been investigated before
by Ahlers (2000), Roche et al. (2001b), Verzicco (2002) and Niemela & Sreenivasan
(2003). The main conclusions are summarized in the review by Ahlers et al. (2009c).
In short, the phenomenological models of Ahlers (2000) and Roche et al. (2001b)
showed that one cannot fully account for the effect of the sidewall by simply
subtracting the corresponding heat transferred to an empty cell. This was confirmed
by Niemela & Sreenivasan (2003) who simulated an idealized two-dimensional
convection problem with a conducting side surface and a fly-wheel-like structure
in the bulk in order to mimic the mean flow sweeping the walls. Verzicco (2002)
modelled the physical properties of the sidewall in three-dimensional DNS and found
that, for usual sidewall thicknesses, the heat travelling from the hot to the cold
plates directly through the sidewall is negligible due to the heat exchanged at the
fluid/wall interface. In contrast, the modified temperature boundary conditions alter
the mean flow, yielding significant Nu corrections in the low-Ra range. All these
works suggested that the sidewall effects vanished for increasing Ra. However, recent
experiments of Roche et al. (2010) and He et al. (2012) indicate that the properties
and temperature boundary conditions of the sidewall are also important at higher Ra.
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FIGURE 2. (Colour online) (a) Schematic diagram of the Göttingen RB setup (adapted
from Ahlers et al. 2009b). From bottom to top, we show the bottom support plate (BSP),
the bottom-shield support ring (BSSR), the bottom shield (BS), the bottom-plate support
ring (BPSR), the bottom-plate bottom (BPb), the bottom-micro-shield bottom (BMSb), the
Lexan plate (Lex), the bottom-micro-shield top (BMSt), the bottom-plate top (BPt), the
bottom micro-shield (BMS indicated as a solid square), the side shield (SS) with its water
cooling coil (WCC), the Plexiglas sidewall (SW), the top micro-shield (TMS, indicated as
a solid square), the top plate (TP), the top-plate cover (TPC) and the top support plate
(TSP). (b) Enlargement of the bottom-plate/sidewall assembly.

In this paper we will use DNS to study the influence of the physical properties of
the sidewall and the temperature boundary conditions at the sidewall on the heat
transport and the flow dynamics in RB convection.

First, we will discuss the numerical procedure employed in §2. In §3 we will
show the difference between simulations with an adiabatic and an isothermal sidewall.
This is an interesting comparison because in most experiments (Brown et al. 2005;
Sun et al. 2005a; Ahlers et al. 2009b; Kunnen et al. 2011) the adiabatic temperature
boundary condition is obtained by placing a temperature shield around the sidewall
that is covered by a layer of insulation, see for example the sketch in figure 2(a)
of the RB sample used in the Göttingen experiments. The temperature of the side
shield is maintained at TM = Tc + 1/2, where Tc is the temperature of the top
plate, since this coincides with the mean temperature of the fluid in the bulk Tm
(when the Oberbeck–Boussinesq approximation is fully valid). In figure 1(b) it is
shown that the heat transport that is measured in the Göttingen experiments depends
on TU − Tm, where TU is the temperature outside the RB sample. In order to
investigate the possible influence of the temperature outside the cell we will consider
different sidewall temperatures in §3. As a completely isothermal sidewall is an
oversimplification of the experimental case, in §4 we will consider the case in which
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only the bottom and top 1.5 % of the sidewall is kept at TM and the rest of the
sidewall is adiabatic. This case is based on the design of the Göttingen RB setup in
which micro-shields with a temperature TM are placed just above (below) the lower
(upper) plate in order to prevent the insulated region between the sidewall and the side
shield being influenced by the temperature of the horizontal plates (see figure 2). In
order to be closer to the experimental situation we simulate the effect of the physical
properties of the sidewall in §5 for some particular setups. In §6 we will also
consider the effect of thermal shields at a fixed temperature and an external layer of
insulating foam where porous convection occurs. Finally, in §7 a brief account of the
changes induced in the flow dynamics by the presence of a non-ideal sidewall is given.
We will conclude the paper with a short summary and some closing remarks. An
Appendix has been added at the end of the paper with two tables containing the most
relevant results of all the numerical simulations presented and discussed in this study.

2. Numerical procedure
In order to simulate the physical properties of the sidewall we solve the

non-dimensional Navier–Stokes equations within the Boussinesq approximation

Du
Dt
=−∇P+

(
Pr
Ra

)1/2

∇2u+ θ ẑ, ∇ · u= 0 on Vf , (2.1)

Dθ
Dt
= 1
(PrRa)1/2

ρf Cpf

ρC
∇ ·

(
λ

λf
∇θ

)
on V, (2.2)

where Vf is the fluid domain 0 6 z 6 L, 0 6 r 6 Rf , and 0 6 φ 6 2π with φ the
azimuthal coordinate, and V (0 6 z 6 L, 0 6 r 6 Rw, and 0 6 φ 6 2π) the total
domain (see figure 3). Also, ρ, C and λ are, respectively, density, specific heat and
thermal conductivity and they assume the values of the fluid (ρf , Cpf and λf with
kf = λf /(ρf Cpf )) or of the sidewall (ρw, Cw and λw) depending on the specific point
in the domain. Note that the physical properties of the sidewall are only incorporated
in the simulations presented in §§5–7. In the simulations presented in §§3 and 4 the
physical properties of the sidewall are not taken into account by setting Rf =Rw, which
sets the sidewall thickness to zero. It is worth mentioning that as the temperature field
is solved on the whole domain V no temperature boundary condition is required at the
solid/fluid interface r = Rf . Instead the isothermal or adiabatic temperature boundary
condition is imposed at the ‘dry’ sidewall surface r=Rw. A third possibility is to have
a ‘mixed temperature boundary condition’ at the sidewall, i.e. isothermal for 06 z6Λ
and L−Λ6 z6 L and adiabatic in between. This configuration mimics one particular
feature of the apparatus of Ahlers et al. (2009c) as will be discussed later.

As indicated in figure 3, at the lower and upper plates, respectively, the temperatures
Th and Tc are prescribed so that they are modelled as isothermal surfaces. This
implies that in our simulations the temperature difference 1 is imposed and the
heat flux entering the fluid Qf is measured by the non-dimensional Nusselt number
Nu=Qf L/(λf1); in the present paper the heat flux Qf in the Nusselt number definition
has been computed from the temperature gradient at the lower (hot) and upper (cold)
plates of surface S, Qf =

∫ 2π

0

∫ Rf

0 λf∇θ · ndS. This situation is similar to some of
the high-Ra experiments in which the temperature of the plates is kept constant (e.g.
Ahlers et al. 2009a,b; Funfschilling et al. 2009), while other high-Ra experiments
(Niemela et al. 2000, 2001; Niemela & Sreenivasan 2006) use an imposed heat flux
at the lower plate and measure the temperature difference 1; also in this case the
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FIGURE 3. (Colour online) Sketch of the numerical setup of the problem: the upper and
lower boundaries are isothermal and no-slip. The sidewall has a thickness c=Rw−Rf and
its ‘dry’ side at r= Rw can be either adiabatic ∂T/∂r= 0 or isothermal at a temperature
T = TU; there is also the possibility of having an isothermal boundary condition for the
portions of the sidewall closest to the plates (0 6 z 6 Λ and L − Λ 6 z 6 L) while the
rest of the sidewall is adiabatic. This will be referred to as a ‘mixed boundary condition’.
The ‘wet side’ of the sidewall (r= Rf ) is no-slip while its temperature is not a boundary
condition but part of the solution of (2.2) (conjugate heat transfer problem). When c 6=
0 the sidewall has thermal properties (density, specific heat and thermal conductivity)
different from the fluid while for c = 0 the sidewall is a simple boundary condition for
velocity and temperature. Note that the hot and cold isothermal surfaces of the plates also
extend below and above the sidewall when its thickness is not zero.

results are normalized through the Nusselt number. Although we note that Johnston
& Doering (2009) and Stevens et al. (2010) have shown that, regardless of the
imposition of 1 or Qf , the same Nu and the same Nu versus Ra relation is obtained
(for high enough Rayleigh numbers) Nu and Qf are not exactly the same quantity
and changes in one do not necessarily imply changes in the other.

It is worth mentioning that for the simulations with finite-thickness sidewall the
isothermal plates extend below and above the sidewall (see figure 3); therefore some
heat is forced through the lateral wall even if only the flux entering and leaving the
fluid layer is accounted for in the evaluation of the Nusselt number. This is trivial
to achieve in numerical simulations by only considering the ‘wet’ surfaces in the
computation of Nu. In contrast, in laboratory experiments the total heat entering the
setup and the plates temperature difference are measured and disentangling the heat
crossing only the fluid from the parasite currents is impossible. An initial naive
approach consisted of subtracting the heat current measured in an empty cell from
that actually crossing the setup with the fluid; this correction, however proved to
be insufficient since it disregarded the conjugate heat transfer between the fluid and
the lateral wall (Ahlers 2000; Roche et al. 2001b). Indeed, numerical simulations by
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Verzicco (2002) showed that some heat was dynamically exchanged between fluid
and sidewall when the latter had its own thermal properties and thickness and ad
hoc corrections were derived to properly account for this effect (Ahlers 2000; Roche
et al. 2001b; Verzicco 2002; Niemela & Sreenivasan 2003).

In this paper the discussion of the results will always use the Nusselt numbers
computed only for the fluid, although some comments on the total heat entering the
setup will be given in the Appendix.

In equations (2.1)–(2.2), ẑ is the unit vector pointing in the opposite direction to
gravity, D/Dt = ∂t + u · ∇ the material derivative, u the velocity vector with no-
slip boundary conditions at all walls, and θ the non-dimensional temperature, 0 6
θ 6 1. The equations have been made non-dimensional by using the length L, the
temperature difference 1, and the free-fall velocity U=√βg1L. These equations have
been written in a cylindrical coordinate frame and discretized on a staggered mesh by
central second-order-accurate finite-difference approximations. The numerical method
is described in detail by Verzicco & Orlandi (1996), Verzicco & Camussi (1997) and
Verzicco (2002). In this paper we present results for 2 × 106 < Ra < 2 × 1010 and
Pr= 0.7 (i.e. gas) in an aspect ratio Γ = 1/2 sample.

In Stevens et al. (2010) we investigated the resolution criteria that should be
satisfied in a fully resolved DNS and Shishkina et al. (2010) determined the minimal
number of nodes that should be placed inside the boundary layers (BL). In Stevens
et al. (2011) we showed that a 769× 193× 769 grid is sufficient to properly resolve
a simulation at Ra = 2 × 1010. Here we have used a resolution of 769 × 257 × 769
for the simulations at Ra= 2× 1010. The increased number of radial nodes was used
to have a proper resolution in the thermal BL that is formed along an isothermal
sidewall or a boundary with physical properties. A proportionally increased radial
resolution was used at lower Ra where simulations could be run to test the effects
of the resolution on the heat transfer. For 2× 107 6 Ra 6 2× 109 the flow could be
simulated with over-resolved meshes (up to 50 % in each direction). These resolution
tests always gave Nu within a few percent of the values obtained with the reference
resolution and the difference decreased for increasing Ra. This observation gives us
confidence that the results are reliable and can be used for the flow analysis. Finally,
we emphasize that for lower Ra (up to Ra ≈ 2 × 108) the results of our code agree
well with completely independently written codes by Shishkina & Thess (2009),
Hébert et al. (2010) and Scheel, Kim & White (2012), and also agree well with
experimental results.

Before starting the discussion of the results we wish to point out that although from
figure 1 it is evident that the largest differences among the experiments show for Ra>
1011, running many simulations at these large Ra is not feasible due to limitations of
the computational resources. As a compromise we have restricted our investigation
to the range 2 × 107 6 Ra 6 2 × 1010 and whenever possible we have exaggerated
the non-standard features (temperature boundary conditions, wall thicknesses, etc.) in
order to make their effects on the flow already visible at lower Ra.

3. Isothermal sidewall

Figure 4 shows a visualization of the instantaneous temperature field at Ra=2×108

in a Γ = 1/2 sample when the sidewall is adiabatic and when it is kept at the constant
temperature TM. The figure shows that the difference between the two cases is the
formation of a thermal BL along the sidewall when it is isothermal and this is most
pronounced close to the horizontal plates. Figures 5(a) and 6 show that at relatively
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FIGURE 4. Visualization of instantaneous temperature field at Ra= 2× 108 and Pr= 0.7
in a Γ = 1/2 sample with an (a) adiabatic and (b) isothermal sidewall at TM . Note the
formation of the thermal BLs along the sidewall when the sidewall is isothermal.
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FIGURE 5. (Colour online) Nu at the bottom (–··– and blue) and top plate (· · · · · · and
green) as function of time for Ra= 2× 108 and Pr= 0.7 in a Γ = 1/2 sample when the
temperature of the sidewall is kept at (a) TU = Tc +1/2= TM and (b) TU = Tc + 0.751
(TU − Tm= 0.0711). The heat transfer at the bottom (—– and black) and top (- - - - and
red) plates for a reference simulation with adiabatic sidewall is given in both figures. The
time t is in non-dimensional units L/U.

low Ra the heat flux is larger when the sidewall is isothermal than when the sidewall
is adiabatic, even though the time-averaged heat flux through the entire sidewall is
zero. However, locally there is a heat flux from the fluid to the sidewall in the lower
half of the sample and vice versa in the top half. Because part of the heat current
avoids the thermal resistance of the fluid in this way the heat transport measured at
the horizontal plates is higher in the case of isothermal sidewalls. Figure 6 shows that
the difference between the heat transport measured with an adiabatic sidewall and with
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FIGURE 6. (Colour online) The heat transport in an RB sample with an adiabatic sidewall
(squares) and a sidewall kept at TU = TM (circles). In (a) these results are compared with
simulations in which the sidewall temperature is TU = Tc + 0.751 (TU − Tm = 0.0711),
indicated by diamonds, and (b) shows the results for the simulations in which the lower
and upper 1.5 % of the sidewall are kept at TU = TM and the rest of the sidewall is
adiabatic, indicated by triangles. Note that up to Ra = 2 × 1010 the error bar of Nu is
smaller than the symbol size.

a sidewall kept at TM decreases with increasing Ra. The reason is that with increasing
Ra the temperature becomes more isothermal in the bulk. Figure 7 confirms that the
azimuthally and time-averaged temperature close to the sidewall, more precisely at
r=R− δθ , where δθ =L/(2Nu) is the thermal BL thickness measured at the horizontal
plates, becomes close to TM just outside the thermal BLs and this effect is more
pronounced at higher Ra. In addition, the BL thickness decreases with increasing Ra
and therefore the fraction of the heat current that can avoid the thermal resistance of
the fluid by going through the sidewall decreases with increasing Ra. This statement
can be made more quantitative by observing the temperature profiles of figure 7(c,d)
(isothermal sidewall) and computing the ‘temperature defect’ as D= (1/L) ∫ L

0 |T(z)−
Tm|dz, which is a measure of how much the fluid layer next to the sidewall deviates
from the isothermal condition T(z)= Tm. We have obtained the values D= 5.0× 10−2,
3.4× 10−2, 2.3× 10−2 and 1.5× 10−2, respectively, for Ra= 2× 107, 2× 108, 2× 109

and 2× 1010. The same quantity computed for the profiles of figure 7(a,b) (adiabatic
sidewall) yields D = 8.0 × 10−2, 5.2 × 10−2, 3.8 × 10−2 and 2.6 × 10−2 (again for
Ra= 2× 107, 2× 108, 2× 109 and 2× 1010) confirming that, in this second case, the
flow is less isothermal. Nevertheless, the sidewall being perfectly adiabatic, no parasite
heat currents can be produced through the sidewall.

On account of the above scenario nearly the same heat transport is already measured
in an RB sample with an adiabatic sidewall and an isothermal surface at TM when
Ra= 2× 1010.

In the Göttingen experiments (Ahlers et al. 2009c) the heat transport measurements
have shown a relevant dependence on TU − Tm, where TU indicates the temperature
outside the RB sample and Tm the average fluid temperature in the sample. As an
aside we note that in a laboratory experiment Tm is not determined as a volume
average of the temperature field but rather as a time average of a pointwise
temperature measurement, or a series of measurements, at a vertical position halfway
between the plates. It is worth mentioning that it is not at all trivial to decide how
an external temperature TU is ‘felt’ by the ‘dry’ surface of the sidewall because of
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FIGURE 7. (Colour online) The temperature profiles at r = R − δθ as a function of the
height when the sidewall is adiabatic (a,b) and isothermal at TM (c,d), for different Ra:
—– , Ra = 2 × 107; - - - - , Ra = 2 × 108; · · · · · · , Ra = 2 × 109; –·– , Ra = 2 × 1010.
In (e,f ) temperature profiles are compared for an adiabatic sidewall (—– ), a sidewall at
TM (· · · · · · ), and the model sidewall (TM for 0 6 z/L 6 0.015 and 0.985 6 z/L 6 1 and
adiabatic for 0.015< z/L< 0.985) (- - - - ) at Ra= 2× 107. The plots on the left (a–c)
show the profiles over the entire domain while the plots on the right (d–f ) are for the
region close to the bottom plate.

the complex interaction between the porous convection in the insulating foam and
the isothermal surfaces of the various shields (see figure 2). Nevertheless, in a first
attempt to model this effect we have changed the temperature of the sidewall to
a value different from TM. Figure 5(b) shows that the heat transport at the bottom
and top plate is different when the temperature of the sidewall is different from TM,
because then a net heat flux is generated through the sidewall. Using geometrical
arguments one can show that the relation between the heat flux at the bottom Nuh
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FIGURE 8. Nu versus TU at Ra = 2 × 108: (a) at the bottom plate and (b) at the top
plate (solid circles); open circles in (a,b) show the average of the top and bottom values.
(c) Nu versus TU through the sidewall. (d) The mean temperature Tm−1/2 (circles) and
TU − Tm (squares) as functions of TU .

and top plate Nuc is given by

Nuh + 4
Γ

Nusw =Nuc, (3.1)

where Nusw is the heat flux through the sidewall.
Figure 8 shows the time-averaged heat flux at the bottom and top plates and

through the sidewall as function of the sidewall temperature for Ra = 2 × 108 and
Pr = 0.7. The figure shows that increasing the sidewall temperature results in a
decrease of the heat transport measured at the bottom plate, but in an increase of
the heat flux through the sidewall and the top plate, as is predicted by the relation
(3.1). However, we note that (Nuh + Nuc)/2 stays approximately constant with TU.
This happens because the warmer sidewall warms up the fluid in the lower part of
the cell and thereby decreases the heat flux that has to be supplied by the bottom
plate. In order to compare these results with the Göttingen experiments we need
to know TU − Tm for the different cases. In a first rough attempt to compare the
simulations with the experiments we take for the temperature outside the cell TU
the temperature of the sidewall. Figure 8(d) shows that TU − Tm increases when the
sidewall temperature is increased. It is worth mentioning that as Nuh 6=Nuc it must be
decided whether the heat transfer measured at the bottom or at the top plate should
be taken for the comparison. Because in the Göttingen experiments He et al. (2012)
only measured the heat transfer at the bottom plate (via the supplied electrical power)
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we decided to compare the Nu measurements with the heat transport at the bottom
plate. In agreement with the experiments of He et al. (2012) figure 6(b) shows that
a positive TU − Tm results in a lower heat transport over a wide Ra range. In this
case the heat transport does not converge to the value measured in a cell with an
adiabatic sidewall for higher Ra, because now the warmer sidewall generates a heat
flux through the sidewall, as shown in figure 8(c).

4. Mixed sidewall boundary conditions
As anticipated, a completely isothermal sidewall is too crude an oversimplification

of the actual experimental configuration. When we examine the design of the
Göttingen RB sample in figure 2(a) in more detail we find that there are micro-shields
placed just above (below) the bottom (top) plate that are kept at a temperature of
TM in order to prevent the temperature of the plates influencing the isolated region
between the sidewall and the side shield. With the aim of being closer to the
experimental situation we consider the sidewall area adjacent to these micro-shields
to have a constant temperature and the rest of the sidewall as adiabatic, since there is
a thick insulation layer between the sidewall and the side shield. Schematically, this
configuration is shown in figure 3. The isothermal regions close to the bottom and
top plates are kept at a temperature of TM and have a height of Λ= 0.015L, which
is based on the design of the Göttingen RB setup (He et al. 2012).

Figure 6(b) shows that, remarkably, the results from this model are almost the same
as for the case in which the entire sidewall temperature is kept at TM. The reason
is that the fluid temperature close to the sidewall only differs significantly from TM
inside the thermal BLs and most of the heat flux through the sidewall is found in
these regions, see figure 7(c,d). In fact, when we compare the thickness of the thermal
BL with the height of the isothermal region of the sidewall (Λ= 0.015L) used in the
model, we find that already for relatively low Ra the small isothermal sidewall regions
are larger than the thermal BL thickness λθ = L/(2Nu), which is 0.0188L at Ra= 2×
107, 0.0106L at Ra= 2× 108, 0.0054L at Ra= 2× 109, and 0.0029L at Ra= 2× 1010.
Thus in the model the sidewall is isothermal within the thermal BL regions. Therefore
the model result is very close to that obtained with a completely isothermal sidewall.
We note that in experiments this region of the sidewall that is close to the horizontal
plates is particularly challenging to control. In fact, in this region the sidewall and the
horizontal plates meet and therefore it is impossible to completely prevent all spurious
heat currents and deviations from the intended ideal problem.

5. Sidewall with physical properties
In this section we investigate the influence of a sidewall with finite thickness and

physical thermal properties on the measured heat transport. There are several different
ways to join the sidewall with the hot and cold plates at the bottom (z= 0) and top
(z = L) surfaces. Here, in order to simplify the computation and the imposition of
the boundary conditions, we have chosen to ‘extend’ the plates below and above the
sidewall (see the sketch of figure 3). In this case the sidewall and the bottom and top
plate are in direct contact. It is worth mentioning that this is only one among several
different possibilities for coupling the sidewall with the plates and, although it might
resemble the arrangement of the Oregon/Trieste experiment (Niemela et al. 2000), it
has been motivated mainly by its computational simplicity. Another possibility could
be that the sidewall extends below (above) the hot (cold) plate and surrounds it, which
is close to the Grenoble and Brno setups (Roche et al. 2001b; Urban et al. 2012).



Sidewall effects in Rayleigh–Bénard convection 13

0.5 1.5 2.50 1.0 2.0

40

45

Nu

FIGURE 9. The heat transfer at Ra = 2 × 108 as a function of sidewall thickness in a
Γ = 1/2 sample with a stainless steel sidewall and filled with a gas at Pr = 0.7 (open
triangles) for an adiabatic temperature boundary condition on the ‘dry’ side of the sidewall.
The other symbols are the data for a Plexiglas sidewall and water as working fluid (Pr=
7.0): solid circles and open squares indicate, respectively, the results for an isothermal
(TM) and adiabatic temperature boundary condition on the ‘dry’ side of the sidewall. The
dotted and solid lines indicate the adiabatic and isothermal (TM) Nu for zero-thickness
sidewalls, respectively.

The latter configuration has not been simulated in order to maintain the total amount
of runs to a reasonable number. Other differences might come from flanges that are
placed externally to the cell to join the sidewall with the plates or to connect different
segments of the sidewall (Niemela et al. 2000); this would result in an effective wall
thickness that is different from its nominal value.

We keep the fluid volume constant and vary the thickness of the sidewall by setting
Rw >Rf , see figure 3. Differently from the results of the previous section, where only
the Rayleigh and Prandtl numbers account for the thermal properties of the system,
here we need also to specify the material properties of the sidewall in order to solve
the conjugate heat transfer problem.

Initially, we consider a Γ = 1/2 sample with a stainless steel sidewall filled with
gaseous helium (Pr = 0.7) at TM = 4.2K. The corresponding material properties are
ρw/ρf = 485, Cw/Cpf = 0.00022, and λw/λf = 44.5. In this case we compare with
results from previous sections only for adiabatic temperature boundary conditions on
the ‘dry’ side (r = Rw) of the stainless steel sidewall because in cryogenic helium
experiments the convection cell is placed in a vacuum. Figure 9 shows that for the
cryogenic helium/stainless steel combination the heat transport depends weakly on
the sidewall thickness c = Rw − Rf , at least for Ra = 2 × 108 and Pr = 0.7, which
is in agreement with the results from Verzicco (2002) where this configuration has
been analysed in detail. We consider further a Γ = 1/2 cell with a Plexiglas sidewall
filled with water (Pr = 7.0), which has been adopted in several recent experiments
(Xi & Xia (2008) with the material properties ρw/ρf = 1.16, Cw/Cpf = 0.239, and
λw/λf = 0.344). For this configuration we use both adiabatic and constant-temperature
boundary conditions on the ‘dry’ side (r = Rw) of the Plexiglas sidewall. Figure 9
shows that the heat transport as function of the sidewall thickness c depends on the
temperature boundary condition on the ‘dry’ side of the sidewall. In particular, when
the latter is isothermal, the heat transport decreases for increasing wall thickness; of
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FIGURE 10. (a,b) The measured temperature profile at the sidewall/fluid interface as a
function of the height when a container with a Plexiglas sidewall is filled with water (Pr=
7.0 and Ra=2×108) and the ‘dry’ surface of the sidewall is isothermal at temperature TM.
The colours indicate the different sidewall thicknesses: black c= 0.005L, red c= 0.0025L,
blue c= 0.0075L, magenta c= 0.0125L and green c= 0.025L. (c,d) The same as (a,b) but
for an adiabatic ‘dry’ surface of the sidewall. The plots on the left-hand side (a,c) show
the profiles over the entire domain and the plots on the right-hand side (b,d) show only
the region close to the horizontal plate.

course as c→ 0, Nu recovers the value of figure 6 for an isothermal zero-thickness
sidewall. For increasing c, owing to the isothermal boundary condition that moves
further from the fluid/wall interface, Nu decreases and eventually drops slightly below
the ideal (adiabatic zero-thickness sidewall) value since some of the heat escapes the
fluid and flows through the sidewall. Figure 10 shows that this behaviour is related
to the temperature of the sidewall at the fluid interface. The figure shows that when
the sidewall is very thin and the ‘dry’ side of the sidewall is maintained at TM the
temperature at the fluid–wall interface is very close to TM, except for a very small
region close to the horizontal plates. This confirms that a very thin sidewall with
these physical properties is indeed close to the case of a perfect isothermal sidewall.
However, with increasing sidewall thickness the region in which the temperature of the
sidewall at the fluid interface deviates from TM increases significantly. This implies
that for increasing c the radial heat flux through the sidewall is significantly lower
than with a perfect isothermal surface and therefore it becomes closer to a sample
with an adiabatic sidewall.

Also in this case it can be noted that when the ‘dry’ surface of the sidewall
is adiabatic the effect of the sidewall thickness on the heat transfer is much less
pronounced than with an isothermal boundary condition and it shows negligible
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sensitivity to the sidewall thickness. The reason is that the temperature profiles at the
fluid–wall interface and at r= Rf − δθ are always close enough to prevent significant
spurious heat fluxes and, owing to the reduced thermal conductivity of the wall,
the temperature profiles do not change with c. Accordingly it is observed that the
differences in Nu are of the order of 2–3 % and comparable to the actual precision
of the heat transfer measurements (∼2%) of laboratory experiments. Nevertheless,
as will be shown in §7, relevant changes in the flow structure can be produced by
changing the sidewall properties even when Nu is relatively unchanged.

We wish to point out that the results of figure 9 describe a general behaviour that
holds regardless of the particular fluid/sidewall combinations even though the numbers
presented here are specific for a cryogenic gaseous helium/stainless steel or ambient
temperature Plexiglas/water setups. In fact, for the Göttingen experiments of He et al.
(2012) with compressed SF6 and a Plexiglas sidewall (ρw/ρf =11.705, Cw/Cpf =2.004,
λw/λf = 13.66, and using c/L= 0.0125) at Ra= 2× 108 and Pr= 0.7 we find Nu=
38.6 using an isothermal boundary condition of TM at the ‘dry’ side and using an
adiabatic boundary condition at the ‘dry’ side. Note that this is below the value Nu=
39.5 computed for the ideal setup.

6. Isolation layer
All the results described above have been obtained assuming that the ambient

temperature boundary conditions can be applied directly at the ‘dry’ side of the
sidewall. Although this is already an improvement with respect to the direct imposition
of the boundary condition at the fluid/wall interface, the real situation is far more
complex because in between the sidewall and the ambient there are usually additional
insulating layers and sometimes thermal shields (see figure 2). On the other hand we
have already mentioned that the sidewall alone cannot prevent spurious radial heat
fluxes from outside when the ambient temperature TU is different from TM and for
this reason we have also simulated some cases in which the sidewall is covered by
an insulating layer of foam and some thermal shields.

The simulated configuration is sketched in figure 11. The insulating foam
(G. Ahlers, Personal Communication) has been assumed of open-cell type, to prevent
its collapse when operating in pressurized environments as in the experiments of
He et al. (2012), and therefore porous convection can occur. In order to model this
phenomenon also we have resorted to an immersed boundary method (Fadlun et al.
2000) that modifies (2.1) to

Du
Dt
=−∇P+

(
Pr
Ra

)1/2

∇2u+ θ ẑ+ f (6.1)

and allows fluid, solid and porous media to be handled with a single equation. In more
detail, the forcing term f takes a different expression depending on the particular point
in the domain:

(a) f = 0 in the fluid so that (6.1) reduces to the Navier–Stokes equation;
(b) f has a value that ensures that u= 0 within the solid parts (sidewall and thermal

shields, see Fadlun et al. 2000 for more details);
(c) f = −u/K in the insulating foam to allow for porous convection with pressure

losses that depend on the porosity K (Navier–Stokes–Brinkman equation).

Note that (2.2) remains unmodified even if ρ, C and λ assume the value of the foam
or the shields when the point is in those media.
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FIGURE 11. Sketch of the numerical setup for the cell with an external insulating layer
and thermal shields; the upper and lower boundaries are isothermal. The sidewall has a
thickness c = Rw − Rf and the porous foam is f = RI − Rw thick; its ‘external side’ at
r = RI can be either adiabatic ∂T/∂r = 0 or isothermal at a temperature T = TU . Within
the foam volumes thermal shields with a prescribed temperature can be placed.

Looking at figure 11, and considering different combinations of materials,
thicknesses of walls and layers, in addition to multiple shields at various positions,
it is immediately clear that a complete parameter study is almost impossible owing
to the enormous number of possible configurations. We have therefore considered
only two cases, one with a layer of foam and without shields and another with three
shields arranged as in He et al. (2012). For these simulations we have used the same
resolutions as the previous cases at Ra=2×108 in the vertical and azimuthal direction.
In contrast, the mesh in the radial direction had a larger number of radial nodes to
simulate also the phenomena in the foam layer and in the thermal shields, and
the computational points were non-uniformly distributed (by a third-order spline) to
capture the boundary layers at the interfaces. Finally, the mesh had 193× 131× 257
nodes in the azimuthal, radial and vertical directions (while the previous cases at
Ra= 2× 108 were run on meshes of 193× 85× 257 nodes).

For the first case we have assumed a foam layer of thickness RI − Rw = 0.1375L
and with properties ρI = 2ρf , CI = Cpf and λI = 5λf and a Plexiglas sidewall with
thickness c = 0.0125L. For the non-dimensional porosity we have used the value
K = 10 after having verified by preliminary simulations that the order of magnitude
of the velocities within the foam was about fifty times smaller than that in the fluid.
Figure 12(a) shows that the resulting Nu using an ambient temperature TU = TM
are consistent with the value of Nu = 38.6 found while modelling just the Plexiglas
sidewall. Figure 12(b) shows that TU = Tc + 0.551 gives Nuc = 40.1 and Nuh = 37.1
and both values are smaller than those of figure 8 for a similar TU but without a
sidewall with physical properties. Nevertheless the fact that Nuc > Nuh suggests that,
despite the layer of foam, some heat flux is entering the fluid through the sidewall
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FIGURE 12. (Colour online) Time evolution of Nu at the hot (—– ) and cold (- - - - )
plates for a flow at Ra=2×108 using compressed SF6 (Pr=0.7) with a Plexiglas sidewall
of thickness c= 0.0125L and a layer of insulating foam of thickness RI − Rw = 0.1375L:
(a) ambient temperature TU = TM, (b) ambient temperature TU = Tc + 0.551.

and indeed it is confirmed by a direct computation. It is worth mentioning that this
behaviour shows up only after a very long initial transient, of the order of ∼103

time units at Ra= 2× 108, since it takes a long time before the system with a thick
insulating foam layer reaches thermal equilibrium. Running similar cases at higher
Ra is therefore unfeasible because the length of the initial transient will increase with
increasing Ra, while the time step becomes smaller and the simulation cost per time
step higher.

Figure 13 shows an instantaneous temperature snapshot for a flow at Ra= 2× 108

and Pr = 0.7 in a setup inspired by, but not identical to, the Göttingen experiment
of He et al. (2012) with compressed SF6 and a Plexiglas sidewall of thickness
c = 0.01L. The ambient temperature is TU = Tc + 0.51 = TM and the setup includes
also the top and bottom thermal micro-shields (BMS) and (TMS), tori of square
cross-section 0.015L× 0.015L at temperature TM, and a side shield (SS) of thickness
0.01L at temperature TM (see figure 2). For this configuration we have obtained a
bulk temperature Tm = 0.500 that is indistinguishable from TM and also the Nusselt
numbers Nuc = 39.4 and Nuh = 39.5 agree with Nu= 39.5, which is measured in the
‘ideal’ RB cell with adiabatic sidewalls. It is interesting to note that nearly identical
results for the Nusselt numbers and bulk temperature have been obtained in a setup
as in figure 13 but with the surfaces at z= 0 and z= L beyond the sidewall (r> Rw)
at a constant temperature TM.

The arrangement of thermal shields and isolation layers of figure 13 turned out to
be very effective in preventing the effects of the external ambient temperature on the
flow. In an additional simulation, in fact, the external temperature was set to TU=Tc+
0.6751 obtaining a bulk temperature Tm= 0.499 and the Nusselt numbers Nuc= 38.5
and Nuh = 38.4 that, though both smaller, agree within the statistical error (∼3–4%)
with the reference value of Nu= 39.5.

It should be noted however that this result is extremely sensitive to the sealing
between the cell and the thermal shields. In fact, in the setup of figure 13 the
boundaries at z= 0 and z= L are also no-slip beyond the sidewall (r > Rw) and the
thermal shield SS extends vertically up to a distance of 0.015L from the horizontal
plates. As a result the foam in the volume in between the sidewall and the thermal
side shield is almost closed. Hence the velocities in the foam are more than hundred
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FIGURE 13. Instantaneous snapshot of the temperature field at Ra = 2 × 108 and Pr =
0.7 for a setup with compressed SF6 and a Plexiglas sidewall of thickness c = 0.01L.
The ambient temperature is TU = Tc + 0.51. This setup reproduces the micro-thermal
shields BMS and TMS, toroidal rings of square cross-section m × m with m = 0.015L,
at temperature TM and the side shield SS, also at TM. The side shield has a thickness of
0.01L, a distance from the ‘dry’ side of the sidewall equal to D= 0.03L and a distance
from the bottom and top boundaries of d=0.015L. This setup is inspired by the Göttingen
experiment sketched in figure 2. Note that in this particular setup, the portion of the upper
and lower surfaces (z=0 and z=L) outside the sidewall (r>Rw) are set at the temperature
TM. On the right there is a detail of the sidewall, plate and shields junction. Note that the
lower plate is conventionally coloured red while the fluid at the highest temperature θ = 1
is indicated by magenta.

times smaller than in the fluid. In another simulation we have reduced the vertical
length of the side shield so that it extended between 0.06L 6 z 6 0.94L instead of
the range 0.015L 6 z 6 0.985L of the previous case. Owing to this small change in
the shield extension the bulk temperature was slightly raised to Tm = 0.507, with an
uncertainty below 1%, which is in the same direction as the results of figure 8(d).
The Nusselt numbers, however, remained equal to the ideal Nu within the statistical
uncertainty (∼3–4%) and further conclusions cannot be drawn.

Despite the effort in setting up a numerical simulation close to the Göttingen
laboratory experiment of He et al. (2012) there are still details that make the two
samples slightly different. In the latter case the volume between the sidewall and the
shield SS is sealed by a film of lexan. In addition, direct contact between the top
and bottom plates and the micro-shields (BMS, TMS) is prevented by another layer
of lexan (G. Ahlers, Personal Communication). Both details have not been included
in the numerical simulations.

Based on the above results it is clear that the flow can be influenced by the details
of the experimental apparatus outside the fluid region. Since the number of possible
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FIGURE 14. (Colour online) (a) Temperature time series sampled at z= 0.5L, r=Rf − δθ
(with δθ = L/(2Nu)), and φ = 0 at Ra= 2× 108 and Pr= 0.7: —– , adiabatic sidewall; -
- - - , isothermal sidewall; · · · · · · , sidewall of finite thickness with isothermal ‘dry’ side
(c = 0.0125L), Plexiglas/pressurized SF6 combination). (b) Histograms of the time series
of (a). In the adiabatic case the fluctuations are much larger.

combinations of shields, thicknesses, positions, materials and temperature boundary
conditions is too large to be covered even by an ad hoc investigation, it would be
advisable to run simulations of specific cases in order to test in advance a particular
geometry. Nevertheless, as a general conclusion it can be said that the junction
between the horizontal plates and the sidewall is particularly critical and also the
use of thermal shields and their positioning, though generally beneficial, should be
carefully considered.

7. Sidewall effects on the flow
In all the previous sections we focused on how the sidewall affects the heat

transfer. In this section we show that the sidewall properties can also influence the
flow structures and that this does not necessary have to be reflected in the Nusselt
number.

From figure 10 it is already evident that a different sidewall temperature boundary
condition can change the mean temperature profiles in the nearby flow region.
However, these changes are only significant close to the horizontal plates where
most of the (spurious) radial heat flux occurs. The situation is quite different for the
temperature fluctuations since an adiabatic boundary allows for any fluctuation while
an isothermal surface tends to anchor the fluid temperature to its own value. This
behaviour is shown in figure 14 where temperature time series sampled by a probe at
mid-height (z= L/2) and at the same radial distance from the boundary (r= Rf − δθ )
are shown for an adiabatic, isothermal, and finite-thickness sidewall. The first evident
difference for the first two cases is that, although both temperatures are fluctuating
about the mean value TM, the fluctuations are smaller for the constant-temperature
sidewall, which is consistent with the above conjecture. The case with finite-thickness
sidewall, with its own physical properties, shows fluctuations that are of the same
order as those of the isothermal boundary even though the latter is not directly in
contact with the fluid. In this case, however, the heat dynamics in the solid wall
is coupled with that in the fluid and many different behaviours can be obtained by
changing the solid and fluid properties.

We wish to stress, however, that this latter result depends on the temperature
boundary condition on the ‘dry’ surface of the sidewall, on its thickness and on its
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FIGURE 15. (Colour online) Time and azimuthally averaged vertical r.m.s. temperature
profiles at a distance δθ = L/(2Nu) from the ‘wet’ surface of the sidewall at Ra =
2× 108 and Pr = 0.7: —– , ideal adiabatic sidewall; - - - - , isothermal sidewall; –·– ,
mixed boundary conditions as in §4; · · · · · · , sidewall of finite thickness (c = 0.0125L,
Plexiglas/pressurized SF6 combination) with an isothermal temperature boundary condition
on the ‘dry’ side.

physical properties through the ratios λw/λf , ρwCw/(ρf Cpf ) (see (2.2)). In fact, by
varying the sidewall properties and its temperature boundary conditions it is possible
to obtain, for the flow region next to the sidewall, any behaviour ranging from
the absence of temperature fluctuations up to the maximum for the ideal adiabatic
boundary with zero heat capacity.

The analysis in this section was motivated by the study of Ahlers et al. (2012)
showing that the experimental measurements of wall-close vertical temperature profiles
in the range 8 × 1012 6 Ra 6 1015 behaved according to a logarithmic law even at
the low end of Ravalues where it was not expected since they did not belong to the
ultimate regime predicted by Kraichnan (1962) and Grossmann & Lohse (2011). The
data of the numerical simulations from Stevens et al. (2011) at Ra = 2 × 1012 not
only confirmed the logarithmic temperature profiles but showed excellent agreement
with the experimental fits (Ahlers et al. 2012). In contrast, the temperature fluctuation
profiles in experiments and simulations, though both could be fitted by a logarithmic
law, did not agree: in the numerical simulations the fluctuations were about five
times larger than in the laboratory measurements. In a successive analysis part of
the disagreement was found to be caused by the too large thermal inertia of the
thermistors that acted as a low-pass filter on the temperature fluctuations (G. Ahlers,
Personal Communication). Another part of the mismatch, however, should be ascribed
to the different nature of the sidewall that, in the numerical simulation is ideal and
adiabatic, therefore allowing for the maximal fluctuations, while in the experiment it
is of finite thickness and made of Plexiglas. Figure 15 shows that indeed the sidewall
has already altered the profiles of the temperature fluctuations at Ra = 2 × 108 and
that a wide range of possible behaviours can be obtained by changing the sidewall
properties and the temperature boundary condition on the ‘dry’ side.

Before concluding this section we show that the sidewall can also play a key role in
determining the mean flow structure. To this end have simulated an artificial example
in which a gas is bounded on the side by a very conductive sidewall (ρwCw/(ρf Cpf )=
2925, and λw/λf = 1000) of thickness c= 0.0125L. The thermal conductivity ratio is
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FIGURE 16. Time and azimuthally averaged temperature, (a,b), and r.m.s. temperature
fluctuations, (c,d), for a flow at Ra= 2× 108 and Pr= 0.7 for a setup with finite-thickness
sidewall (c= 0.0125L) with ρwCw/(ρf Cpf )= 2925, and λw/λf = 1000: (a,c) an isothermal
‘dry’ surface of the sidewall; (b,d) an adiabatic temperature boundary condition. Note that
the time- and azimuthal-average produces a single r–z meridional plane, the other half of
the section is sketched by a dotted line for clarity. In (a,b) a drawing of the mean flow
structure is also shown.

clearly exaggerated and this value is unlikely in a real experimental apparatus; here,
however, we want to stress the effects on the mean flow structure of adiabatic and
isothermal boundary conditions on the ‘dry’ surface of the sidewall and these are
enhanced by a highly conductive material.

In figure 16 we show the mean and root-mean-square (r.m.s.) temperature maps at
Ra= 2× 108 and Pr= 0.7 for two cases, with adiabatic and isothermal ‘dry’ sidewall.
In the first case the mean flow consists of two vertically stacked counter-rotating
toroidal vortices, while for the isothermal ‘dry’ boundary condition the large scale is
the classical single-roll state. Figure 16(c,d) show that these flows produce completely
different temperature fluctuations as argued at the beginning of this section.

Clearly, the reason for the generation of the two tori of figure 16(b) is the undesired
temperature distribution along the sidewall that extends the plates along the vertical
boundary, therefore also forcing the flow from the side. In contrast, when the ‘dry’
sidewall is forced to be isothermal at temperature TM, the heat flowing from the
horizontal plates to the sidewall can escape from the system directly through the
isothermal surface without entering the fluid.
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We wish to stress that the structures of figure 16(a,b) are not hysteretic
configurations resulting from a particular initial condition but rather stable states
to which the system relaxes. As a check, we have used the standard single-roll
configuration of figure 16(a) as initial condition for the setup of figure 16(b) and
we have verified that after a very long transient (of ∼800L/U time units) the flow
undergoes a slow adjustment and eventually it recovers the two-tori configuration
of figure 16(b). It is worth mentioning that despite the very different mean flow in
both cases of figure 16 the bulk temperature was Tm = TM and the differences of Nu
were well within those of isothermal and adiabatic sidewall temperature boundary
conditions.

Finally, in this section, just as in other cases analysed in this paper, the thickness of
the sidewall has been exaggerated in order to make its effect already evident at Ra=
2× 108 when the mean flow is intense and it dominates the flow dynamics. We find
that, as Ra increases the large-scale circulation weakens and therefore it is likely that
thinner sidewalls with reduced heat capacity would also be able to force a particular
flow state.

8. Summary
We used direct numerical simulations (DNS) to investigate the influence of the

physical properties and the temperature boundary conditions of the sidewall on the
heat transport in Rayleigh–Bénard (RB) convection. The cases we considered are
inspired by the experiments of Ahlers et al. (2009b), Xi & Xia (2008) and Niemela
et al. (2000). He et al. (2012) found two different branches for the heat transport: a
slightly higher heat transport is measured when TU − Tm is negative, where TU is the
temperature outside the cell and Tm is the average fluid temperature, and vice versa
when TU − Tm is positive.

We show that keeping the temperature of the sidewall fixed at TM leads to a higher
heat transport at lower Ra, because part of the heat current circumvents the thermal
resistance of the fluid by going through the sidewall. However, this effect disappears
at higher Ra where the bulk becomes more isothermal and the heat flux through the
sidewall decreases. In agreement with the experimental results we find that an increase
of the sidewall temperature, with respect to the value TM, leads to a lower heat transfer
at the bottom plate. Just as in experiments this effect is visible over a large Ra regime;
at least up to Ra = 2 × 1010, there are no indications that the effect decreases for
increasing Ra. Subsequently, we argue that in the Göttingen RB setup the temperature
boundary condition should be close to adiabatic in the centre region and close to a
constant-temperature condition of TM in the vicinity of the horizontal plates due to
the use of the micro-shields. The heat transfer we measure at the bottom plate in
this model is the same as the heat transfer that is obtained when the entire sidewall
is kept at TM. This shows that the sidewall region close to the horizontal plates is
crucial, while this is particularly challenging region in experiments as the sidewall and
the horizontal plates meet in this region and therefore it is impossible to completely
prevent all heat currents in that region.

The flow dynamics is more complex when the sidewall is considered, with its
thermal properties and thickness, because the heat dynamics in the fluid couples with
that in the wall. For RB samples filled with water (Pr = 7.0) and with a Plexiglas
lateral boundary, the Nusselt number shows little sensitivity to the sidewall thickness
when its ‘dry’ surface is adiabatic. In contrast, when the ‘dry’ side of the sidewall is
isothermal, the temperature at the fluid–wall interface becomes such that large heat
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fluxes through the sidewall are generated. However these spurious fluxes decrease
as the wall thickness increases and, for thick enough sidewalls (c > 0.0075L) the
deviations of Nu are below 2–3 %.

As a proof-of-concept, resorting to the Navier–Stokes–Brinkman equations, we have
simulated a case with an additional external insulation layer of foam, where porous
convection can occur, and some others with the foam and several thermal shields. The
former case showed that, apart from producing very long transients, the foam alone
could not prevent the flow being affected by an ambient temperature TU different from
TM. In contrast, the combined use of foam and thermal shields adequately prevented
undesired effects. Nevertheless, it has also been shown that the shielding of the region
next to the junction between plates and sidewall is really crucial and small changes
in the shield position are already sensed by the flow at Ra= 2× 108.

We wish to point out that all the simulations with the foam and the shields were
performed at Ra = 2 × 108 owing to the augmented complexity of the problem that
largely increased the computational time of the simulations. Although the results have
given useful indications about some additional effects they have been obtained for a
Rayleigh number that is few orders of magnitude below the range of the experiments
(Ra= 1011–1015). The present results, therefore, should not be trivially applied to the
experiments without further considerations on very high Rayleigh number flows.

Finally, it was shown that the sidewall not only affects the heat transfer but can also
influence the temperature fluctuations and even the mean flow structure. Owing to the
very large number of parameters that can influence the flow it is unfeasible to explore
the complete phase space. By analysing some particular aspects, however, we hope to
have shed some light on details that should be kept under control when designing a
new setup or running an experiment.
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Appendix. Tables with the results of the simulations
In this Appendix we report the key data of the simulations performed in the paper;

table 1 contains the data for the zero-thickness sidewall (see §§3 and 4). Table 2
summarizes the simulations with the finite-thickness sidewall with thermal properties
of §5.

Following the papers by Ahlers (2000), Roche et al. (2001b), Verzicco (2002) and
Niemela & Sreenivasan (2003) we can compute the total heat flowing through the hot
plate as QT =

∫ 2π

0

∫ Rw

0 λ∇θ ·ndS and the heat going from the hot plate directly into the
sidewall as Qw=

∫ 2π

0

∫ Rw

Rf
λ∇θ · ndS, where λ is either the thermal conductivity of the

fluid λf or of the sidewall λw depending on whether the point of the plate is in contact
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Ra SW (TU) Tm Nuh Nuc Nusw

2× 106 Adiab. 0.50 10.63 10.64 ≈0
2× 106 Isot. (0.5) 0.50 16.73 16.74 ≈0
2× 107 Adiab. 0.50 20.50 20.42 ≈0
2× 107 Isot. (0.5) 0.50 26.41 26.40 ≈0
2× 107 Isot. (0.75) 0.68 15.86 39.10 3.01
2× 107 Mixed 0.50 28.03 28.00 ≈0
2× 108 Adiab. 0.50 39.50 39.60 ≈0
2× 108 Isot. (0.5) 0.50 45.70 45.83 ≈0
2× 108 Isot. (0.52) 0.51 44.31 47.13 0.37
2× 108 Isot. (0.55) 0.54 41.12 49.83 1.02
2× 108 Isot. (0.60) 0.57 37.60 54.00 2.14
2× 108 Isot. (0.675) 0.63 31.80 60.17 3.69
2× 108 Isot. (0.75) 0.68 26.73 67.65 5.04
2× 108 Mixed 0.50 47.22 46.96 ≈0
2× 109 Adiab. 0.50 79.75 79.73 ≈0
2× 109 Isot. (0.5) 0.50 89.36 89.31 ≈0
2× 109 Isot. (0.75) 0.67 54.99 131.51 10.20
2× 109 Mixed 0.50 90.56 91.21 ≈0
2× 1010 Adiab. 0.50 173.10 173.48 ≈0
2× 1010 Isot. (0.5) 0.50 171.58 171.16 ≈0
2× 1010 Isot. (0.75) 0.68 102.28 277.51 22.41
2× 1010 Mixed 0.50 173.84 173.33 ≈0

TABLE 1. Summary of the simulations performed for the configuration with ‘zero-
thickness’ sidewall. The columns from left to right indicate the Rayleigh number (Ra);
the sidewall temperature boundary condition, adiabatic (adiab.) or isothermal (isot.) and
for the latter the imposed temperature (TU); and the volume-averaged fluid temperature
(Tm ). Nuh and Nuc are, respectively, the Nusselt numbers computed as surface averages
at the hot and cold plates. Nusw is the Nusselt number evaluated as surface average on the
sidewall. All the simulations are performed at Pr= 0.7.

with the former or the latter. The heat entering the fluid layer is trivially Qf =QT −Qw
and it should be used to compute the Nusselt number. In laboratory experiments, only
QT is available and, according to Ahlers (2000), the factors fw=Qw/QT or ff =Qf /QT ,
if known from some model, could be used to correct the measured quantity QT to
compute a corrected Nusselt number via Nucorr = ff QT/S.

In table 2 we report the factor ff as obtained by the present numerical simulations in
which QT and Qf could be computed separately. We note that the case of cryogenic
helium and c/L = 0.0025 agrees with the results of Verzicco (2002). The values
obtained for the stainless steel/gaseous helium setup imply larger differences than
those for the combination Plexiglas/water: this is not surprising on account of
the bigger ratio of the thermal conductivities λw/λf of the former case. For the
combination of Plexiglas and water the correction is bigger for isothermal boundary
conditions on the ‘dry’ side of the sidewall than for the adiabatic case.

We also report the wall number W = (4/Γ )(λw/λf )(c/L) and the correction factor
F=1/[1+ f (W)] with Nucorr=FQT/S, where f (W)=[A2/(ΓNu)](√1+ 2WΓNu/A2−
1) as defined by Roche et al. (2001b) with A= 0.8.
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Pr (ρC)w/(ρCp)f λw/λf 100c/L SW (TU) Tm Nuh Nuc ff W F

0.7 0.107 44.5 0.05 Adiab. 0.50 39.04 39.22 0.964 0.178 0.926
0.7 0.107 44.5 0.25 Adiab. 0.50 38.70 38.51 0.877 0.89 0.827
0.7 0.107 44.5 0.625 Adiab. 0.50 38.82 38.51 0.784 2.225 0.743
0.7 0.107 44.5 1.25 Adiab. 0.50 39.56 39.32 0.594 4.450 0.665
0.7 0.107 44.5 2.5 Adiab. 0.50 39.68 39.95 0.210 8.900 0.580
7.0 0.277 0.344 0.05 Adiab. 0.50 39.37 39.24 0.999 0.0014 0.999
7.0 0.277 0.344 0.25 Adiab. 0.50 38.08 38.46 0.998 0.007 0.993
7.0 0.277 0.344 0.625 Adiab. 0.50 39.13 38.80 0.992 0.017 0.986
7.0 0.277 0.344 1.25 Adiab. 0.50 39.06 38.91 0.909 0.034 0.976
7.0 0.277 0.344 2.5 Adiab. 0.50 39.16 38.75 0.968 0.069 0.960
7.0 0.277 0.344 0.05 Isot. (0.5) 0.50 42.73 42.61 0.970 0.0014 0.999
7.0 0.277 0.344 0.25 Isot. (0.5) 0.50 40.25 40.12 0.938 0.007 0.997
7.0 0.277 0.344 0.625 Isot. (0.5) 0.50 39.73 39.89 0.919 0.017 0.986
7.0 0.277 0.344 1.25 Isot. (0.5) 0.50 39.26 39.08 0.927 0.034 0.976
7.0 0.277 0.344 2.5 Isot. (0.5) 0.50 38.86 39.15 0.891 0.069 0.960
0.7 23.45 13.66 1.25 Adiab. 0.50 38.71 38.55 0.899 1.366 0.790
0.7 23.45 13.66 1.25 Isot. (0.5) 0.50 38.54 38.67 0.213 1.366 0.790

TABLE 2. Summary of the simulations performed for the configuration with ‘finite-
thickness’ sidewall with thermal properties. The columns from left to right indicate the
Prandtl number (Pr); the ratio of the specific heat capacities (ρC) of wall and fluid;
the ratio of their thermal conductivities (λ); the sidewall thickness (c); the ‘dry surface’
sidewall temperature boundary condition, adiabatic (adiab.) or isothermal (isot.) and for
the latter the imposed temperature (TU); and the volume-averaged fluid temperature (Tm).
Nuh and Nuc are, respectively, the Nusselt numbers computed as surface averages at the
hot and cold plates; ff is the ratio of the heat flowing through the sidewall (Qw) and the
total heat (QT) imposed on the system. W = (4/Γ )(λw/λf )(c/L) is the wall number and
F = 1/[1 + f (W)] with f (W) = [A2/(ΓNu)](√1+ 2WΓNu/A2 − 1) as defined by Roche
et al. (2001b). All the simulations are performed at Ra= 2× 108.

Finally we emphasize that the Nusselt number even if computed by Nu = Qf /S
deviates substantially from the value Nuideal as it comes from a simulation with a zero-
thickness adiabatic sidewall in the case of the isothermal sidewall boundary condition.
Therefore, even if f were given by some reliable model it would not return the ideal
Nusselt number owing to the changes produced in the flow by the conjugate heat
transfer between the lateral boundary and the fluid layer.
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