1,093 research outputs found

    A New Channel for the Detection of Planetary Systems Through Microlensing: I. Isolated Events Due to Planet Lenses

    Get PDF
    We propose and evaluate the feasibility of a new strategy to search for planets via microlensing. This new strategy is designed to detect planets in "wide" orbits, i.e., with orbital separation, aa greater than ∼1.5RE\sim 1.5 R_E. Planets in wide orbits may provide the dominant channel for the microlensing discovery of planets, particularly low-mass (e.g., Earth-mass) planets. This paper concentrates on events in which a single planet serves as a lens, leading to an isolated event of short duration. We point out that a distribution of events due to lensing by stars with wide-orbit planets is necessarily accompanied by a distribution of shorter- duration events. The fraction of events in the latter distribution is proportional to the average value of q\sqrt{q}, where qq is the ratio between \pl and stellar masses. The position of the peak or peaks also provides a measure of the mass ratios typical of planetary systems. We study detection strategies that can optimize our ability to discover isolated short-duration events due to lensing by planets, and find that monitoring employing sensitive photometry is particularly useful. If planetary systems similar to our own are common, even modest changes in detection strategy should lead to the discovery of a few isolated events of short duration every year. We therefore also address the issue of the contamination due to stellar populations of any microlensing signal due to low-mass MACHOs. We describe how, even for isolated events of short duration, it will be possible to test the hypothesis that the lens was a planet instead of a low-mass MACHO, if the central star of the planetary system contributes a measurable fraction of the baseline flux.Comment: 37 pages, 6 figure. To be published in the Astrophysical Journal. This is part one of a series of papers on microlensing by planetary systems containing wide-orbit planets; the series represents a reorganization and extension of astro-ph/971101

    A New Channel for the Detection of Planetary Systems Through Microlensing: II. Repeating Events

    Full text link
    In the companion paper we began the task of systematically studying the detection of planets in wide orbits (a>1.5REa > 1.5 R_E) via microlensing surveys. In this paper we continue, focusing on repeating events. We find that, if all planetary systems are similar to our own Solar System, reasonable extensions of the present observing strategies would allow us to detect 3-6 repeating events per year along the direction to the Bulge. Indeed, if planetary systems with multiple planets are common, then future monitoring programs which lead to the discovery of thousands of stellar-lens events will likely discover events in which several different planets within a single system serve as lenses, with light curves exhibiting multiple repetitions. In this paper we discuss observing strategies to maximize the discovery of all wide-orbit planet-lens events. We also compare the likely detection rates of planets in wide orbits to those of planets located in the zone for resonant lensing. We find that, depending on the values of the planet masses and stellar radii of the lensed sources (which determine whether or not finite source size is important), and also on the sensitivity of the photometry used by observers, the detection of planets in wide orbits may be the primary route to the discovery of planets via microlensing. We also discuss how the combination of resonant and wide-orbit events can help us to learn about the distribution of planetary system properties (S 6.1). In addition, by determining the fraction of short-duration events due to planets, we indirectly derive information about the fraction of all short-duration events that may be due to low-mass MACHOs (S 6.2).Comment: 51 pages, 7 figures. To be published in the Astrophysical Journal, 20 February 1999. This completes the introduction to the discovery of planets in wide orbits begun in astro-ph/9808075, also to appear in ApJ on 20 February 199

    Fan Assessment Numeration System (FANS) Design and Calibration Specifications

    Get PDF
    A device for in-situ fan airflow measurement, called the Fan Assessment Numeration System (FANS) device, previously developed and constructed at the USDA-ARS Southern Poultry Research Laboratory, was refined at University of Kentucky as part of a project for quantifying building emissions from poultry and livestock operations. The FANS incorporates an array of five propeller anemometers to perform a real-time traverse of the air flow entering fans of up to 137 cm (54 in) diameter. Details of the updated design, including hardware, software, and calibration methodology are presented. An error analysis of the flow rate, and calibration results from ten units recently manufactured, is provided. Sufficient details of fabrication and calibration are presented so that interested readers can replicate a FANS for their use. Full design details are provided at www.bae.uky.edu/IFAFS/FANS

    Laboratory Focus on Improving the Culture of Biosafety: Statewide Risk Assessment of Clinical Laboratories That Process Specimens for Microbiologic Analysis

    Get PDF
    The Wisconsin State Laboratory of Hygiene challenged Wisconsin laboratories to examine their biosafety practices and improve their culture of biosafety. One hundred three clinical and public health laboratories completed a questionnaire-based, microbiology-focused biosafety risk assessment. Greater than 96% of the respondents performed activities related to specimen processing, direct microscopic examination, and rapid nonmolecular testing, while approximately 60% performed culture interpretation. Although they are important to the assessment of risk, data specific to patient occupation, symptoms, and travel history were often unavailable to the laboratory and, therefore, less contributory to a microbiology-focused biosafety risk assessment than information on the specimen source and test requisition. Over 88% of the respondents complied with more than three-quarters of the mitigation control measures listed in the survey. Facility assessment revealed that subsets of laboratories that claim biosafety level 1, 2, or 3 status did not possess all of the biosafety elements considered minimally standard for their respective classifications. Many laboratories reported being able to quickly correct the minor deficiencies identified. Task assessment identified deficiencies that trended higher within the general (not microbiology-specific) laboratory for core activities, such as packaging and shipping, direct microscopic examination, and culture modalities solely involving screens for organism growth. For traditional microbiology departments, opportunities for improvement in the cultivation and management of highly infectious agents, such as acid-fast bacilli and systemic fungi, were revealed. These results derived from a survey of a large cohort of small- and large-scale laboratories suggest the necessity for continued microbiology-based understanding of biosafety practices, vigilance toward biosafety, and enforcement of biosafety practices throughout the laboratory setting

    Building Interprofessional Global Health Infrastructure at a University and Health System: Navigating Challenges and Scaling Successes

    Get PDF
    Mission: Global Jefferson will create sustainable programs of global distinction through collaboration that position Jefferson as a local and international destination and resource for education, research, and clinical activities. Global Jefferson is supported by the Associate Provost for Global Affairs, part of the Office of the Provost. Global activity at Jefferson includes: Global Health Initiatives Committee (GHIC) Service Learning Global Research & Exchange between institutions Pre-clinical, translational, clinical, and applied research Poster presented at: 8th Annual Global Health Conference of the Consortium of Universities for Global Health (CUGH)https://jdc.jefferson.edu/globalhealthposters/1000/thumbnail.jp

    Continuum Halos in Nearby Galaxies -- an EVLA Survey (CHANG-ES) -- II: First Results on NGC 4631

    Full text link
    We present the first results from the CHANG-ES survey, a new survey of 35 edge-on galaxies to search for both in-disk as well as extra-planar radio continuum emission. The motivation and science case for the survey are presented in a companion paper (Paper I). In this paper (Paper II), we outline the observations and data reduction steps required for wide-band calibration and mapping of EVLA data, including polarization, based on C-array test observations of NGC 4631. With modest on-source observing times (30 minutes at 1.5 GHz and 75 minutes at 6 GHz for the test data) we have achieved best rms noise levels of 22 and 3.5 μ\muJy beam−1^{-1} at 1.5 GHz and 6 GHz, respectively. New disk-halo features have been detected, among them two at 1.5 GHz that appear as loops in projection. We present the first 1.5 GHz spectral index map of NGC 4631 to be formed from a single wide-band observation in a single array configuration. This map represents tangent slopes to the intensities within the band centered at 1.5 GHz, rather than fits across widely separated frequencies as has been done in the past and is also the highest spatial resolution spectral index map yet presented for this galaxy. The average spectral index in the disk is αˉ1.5GHz = −0.84 ± 0.05\bar\alpha_{1.5 GHz}\,=\,-0.84\,\pm\,0.05 indicating that the emission is largely non-thermal, but a small global thermal contribution is sufficient to explain a positive curvature term in the spectral index over the band. Two specific star forming regions have spectral indices that are consistent with thermal emission. Polarization results (uncorrected for internal Faraday rotation) are consistent with previous observations and also reveal some new features. On broad scales, we find strong support for the notion that magnetic fields constrain the X-ray emitting hot gas.Comment: Accepted to the Astronomical Journal, Version 2 changes: Added acknowledgement to NRA

    A comparison of machine learning methods for classification using simulation with multiple real data examples from mental health studies

    Get PDF
    Background: Recent literature on the comparison of machine learning methods has raised questions about the neutrality, unbiasedness and utility of many comparative studies. Reporting of results on favourable datasets and sampling error in the estimated performance measures based on single samples are thought to be the major sources of bias in such comparisons. Better performance in one or a few instances does not necessarily imply so on an average or on a population level and simulation studies may be a better alternative for objectively comparing the performances of machine learning algorithms. Methods: We compare the classification performance of a number of important and widely used machine learning algorithms, namely the Random Forests (RF), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and k-Nearest Neighbour (kNN). Using massively parallel processing on high-performance supercomputers, we compare the generalisation errors at various combinations of levels of several factors: number of features, training sample size, biological variation, experimental variation, effect size, replication and correlation between features. Results: For smaller number of correlated features, number of features not exceeding approximately half the sample size, LDA was found to be the method of choice in terms of average generalisation errors as well as stability (precision) of error estimates. SVM (with RBF kernel) outperforms LDA as well as RF and kNN by a clear margin as the feature set gets larger provided the sample size is not too small (at least 20). The performance of kNN also improves as the number of features grows and outplays that of LDA and RF unless the data variability is too high and/or effect sizes are too small. RF was found to outperform only kNN in some instances where the data are more variable and have smaller effect sizes, in which cases it also provide more stable error estimates than kNN and LDA. Applications to a number of real datasets supported the findings from the simulation study
    • …
    corecore