34 research outputs found

    Design and fabrication of a low-cost wireless camera imaging system for centrifugal microfluidics

    Get PDF
    Centrifugal microfluidic devices offer a robust method for low-volume fluid handling by combining low-cost instrumentation with highly integrated automation. Crucial to the efficacy of Lab-on-a-Disc (LoaD) device operation is the selection of robust valving technology, the design of on-disc fluidic structures, and accurate control of disc spin-speeds (centrifugal force) during operation. The design and refinement of fluidic and valving structures is often guided by inspecting disc operation using high-speed camera systems. This approach involves synchronising image acquisition with disc rotation to visualise liquid flow through a series of images often presented in a video format. Depending on the decisions taken, such systems can cost from €4,000 upwards. This paper outlines the development of a low-cost centrifugal test-stand with an integrated imaging system using a generic wireless camera to record videos directly to a smartphone device. This imaging system can be fabricated using only 3D printers and a low-cost CNC milling machine from widely available materials for approximately €350. High-fidelity imaging of the entire disc for flow visualisation and the recording of real-time colour intensity measurements are facilitated by this standalone device. A vibration analysis study has been performed to determine the rotational velocity range at which the system can be safely operated. Furthermore, the efficacy of the imaging system has been demonstrated by performing real-time colour intensity measurements of dyed water dilution

    Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling

    Get PDF
    The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies

    Review: The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors

    Get PDF
    The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes

    Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health

    Full text link

    Cardiac Troponin I: Ultrasensitive Detection Using Faradaic Electrochemical Impedance

    No full text
    An electrochemical biosensor for the detection of cardiac troponin I, cTnI, an important cardiac biomarker, is described. A combination of a novel monoclonal antibody, mAb20B3, and a novel Ir(III)-based metal complex was used for detection using faradaic electrochemical impedance spectroscopy. A limit of detection of 10 ag/mL was achieved, which is significantly lower than established assays. The ability to detect these ultralow concentrations enables rapid and early stage detection of cardiac events and opens up the possibility of developing a point-of-care device

    Functional expression of STRA6-GFP in <i>Pichia pastoris</i>.

    No full text
    <p><b>(A)</b> Schematic of the STRA6-GFP-c-Myc-His<sub>6</sub> construct designed in this study. The location of a HRV 3C protease cleavage site is indicated by the red cross. <b>(B)</b> Co-localization of STRA6-GFP and DyLight594-conjugated holo-RBP at the cell surface of <i>Pichia pastoris</i> as determined by confocal microscopy. Top panel: GFP fluorescence, indicating the location of STRA6-GFP at the cell surface. Second panel: DyLight-594 fluorescence, showing the binding of RBP to the surface of cells transformed with STRA6-GFP but not empty vector. Third panel: merged image showing the colocalization of STRA6-GFP and DyLight-594 RBP at the cell surface. Bottom panel: Differential interference contrast (DIC) image of the yeast cells. Scale bar: 5 μm <b>(C)</b> Co-purification of holo-RBP with broken cells isolated from yeast transformed with STRA6-GFP but not with broken cells from empty-vector-transformed cells.</p

    Mass spectrometry of STRA6-GFP.

    No full text
    <p>The sequence coverage of STRA6-GFP based on tryptic peptides identified by LC-MS/MS is shown.</p><p>Mass spectrometry of STRA6-GFP.</p
    corecore