69 research outputs found

    The national security key indicators as a part of economic development in the conditions of digitization

    Get PDF
    International audienceMethylglyoxal is a faulty metabolite. It is a ubiquitous by-product of glucose and amino acid metabolism that spontaneously reacts with proximal amino groups in proteins and nucleic acids, leading to impairment of their function. The glyoxalase pathway evolved early in phylogeny to bring about rapid catabolism of methylglyoxal, and an understanding of the role of methylglyoxal and the glyoxalases in many diseases is beginning to emerge. Metabolic processing of methylglyoxal is very rapid in vivo and thus notoriously difficult to detect and quantify. Here we show that C-13 nuclei in labeled methylglyoxal can be hyperpolarized using dynamic nuclear polarization, providing C-13 nuclear magnetic resonance signal enhancements in the solution state close to 5,000-fold. We demonstrate the applications of this probe of metabolism for kinetic characterization of the glyoxalase system in isolated cells as well as mouse brain, liver and lymphoma in vivo

    Glyoxalase activity in human erythrocytes and mouse lymphoma, liver and brain probed with hyperpolarized C-13-methylglyoxal

    Get PDF
    Methylglyoxal is a faulty metabolite. It is a ubiquitous by-product of glucose and amino acid metabolism that spontaneously reacts with proximal amino groups in proteins and nucleic acids, leading to impairment of their function. The glyoxalase pathway evolved early in phylogeny to bring about rapid catabolism of methylglyoxal, and an understanding of the role of methylglyoxal and the glyoxalases in many diseases is beginning to emerge. Metabolic processing of methylglyoxal is very rapid in vivo and thus notoriously difficult to detect and quantify. Here we show that 13C nuclei in labeled methylglyoxal can be hyperpolarized using dynamic nuclear polarization, providing 13C nuclear magnetic resonance signal enhancements in the solution state close to 5,000-fold. We demonstrate the applications of this probe of metabolism for kinetic characterization of the glyoxalase system in isolated cells as well as mouse brain, liver and lymphoma in vivo

    Metabolic Imaging Detects Low Levels of Glycolytic Activity That Vary with Levels of c-Myc Expression in Patient-Derived Xenograft Models of Glioblastoma.

    Get PDF
    13C MRI of hyperpolarized [1-13C]pyruvate metabolism has been used in oncology to detect disease, investigate disease progression, and monitor response to treatment with a view to guiding treatment in individual patients. This technique has translated to the clinic with initial studies in prostate cancer. Here, we use the technique to investigate its potential uses in patients with glioblastoma (GB). We assessed the metabolism of hyperpolarized [1-13C]pyruvate in an orthotopically implanted cell line model (U87) of GB and in patient-derived tumors, where these were produced by orthotopic implantation of cells derived from different patients. Lactate labeling was higher in the U87 tumor when compared with patient-derived tumors, which displayed intertumoral heterogeneity, reflecting the intra- and intertumoral heterogeneity in the patients' tumors from which they were derived. Labeling in some patient-derived tumors could be observed before their appearance in morphologic images, whereas in other tumors it was not significantly greater than the surrounding brain. Increased lactate labeling in tumors correlated with c-Myc-driven expression of hexokinase 2, lactate dehydrogenase A, and the monocarboxylate transporters and was accompanied by increased radioresistance. Because c-Myc expression correlates with glioma grade, this study demonstrates that imaging with hyperpolarized [1-13C]pyruvate could be used clinically with patients with GB to determine disease prognosis, to detect early responses to drugs that modulate c-Myc expression, and to select tumors, and regions of tumors for increased radiotherapy dose.Significance: Metabolic imaging with hyperpolarized [1-13C]pyruvate detects low levels of c-Myc-driven glycolysis in patient-derived glioblastoma models, which, when translated to the clinic, could be used to detect occult disease, determine disease prognosis, and target radiotherapy. Cancer Res; 78(18); 5408-18. ©2018 AACR.The work was supported by a Cancer Research UK Programme grant (17242) and by the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (16465) awarded to K. M. Brindle. F. Kreis was supported by a Marie Curie ITN studentship (EUROPOL) and R. Mair by Addenbrooke's Charitable Trust and a CRUK Cambridge Centre Fellowship

    Glyoxalase activity in human erythrocytes and mouse lymphoma, liver and brain probed with hyperpolarized 13C-methylglyoxal.

    Get PDF
    Methylglyoxal is a faulty metabolite. It is a ubiquitous by-product of glucose and amino acid metabolism that spontaneously reacts with proximal amino groups in proteins and nucleic acids, leading to impairment of their function. The glyoxalase pathway evolved early in phylogeny to bring about rapid catabolism of methylglyoxal, and an understanding of the role of methylglyoxal and the glyoxalases in many diseases is beginning to emerge. Metabolic processing of methylglyoxal is very rapid in vivo and thus notoriously difficult to detect and quantify. Here we show that 13C nuclei in labeled methylglyoxal can be hyperpolarized using dynamic nuclear polarization, providing 13C nuclear magnetic resonance signal enhancements in the solution state close to 5,000-fold. We demonstrate the applications of this probe of metabolism for kinetic characterization of the glyoxalase system in isolated cells as well as mouse brain, liver and lymphoma in vivo

    Promoting help-seeking in response to symptoms amongst primary care patients at high risk of lung cancer: a mixed method study

    Get PDF
    Background: Lung cancer symptoms are vague and difficult to detect. Interventions are needed to promote early diagnosis, however health services are already pressurised. This study explored symptomology and help-seeking behaviours of primary care patients at ‘high-risk’ of lung cancer (≥50 years old, recent smoking history), to inform targeted interventions. Methods: Mixed method study with patients at eight general practitioner (GP) practices across south England. Study incorporated: postal symptom questionnaire; clinical records review of participant consultation behaviour 12 months pre- and post-questionnaire; qualitative participant interviews (n = 38) with a purposive sample. Results: A small, clinically relevant group (n = 61/908, 6.7%) of primary care patients was identified who, despite reporting potential symptoms of lung cancer in questionnaires, had not consulted a GP ≥12 months. Of nine symptoms associated with lung cancer, 53.4% (629/1172) of total respondents reported ≥1, and 35% (411/1172) reported ≥2. Most participants (77.3%, n = 686/908) had comorbid conditions; 47.8%, (n = 414/908) associated with chest and respiratory symptoms. Participant consulting behaviour significantly increased in the 3-month period following questionnaire completion compared with the previous 3-month period (p = .002), indicating questionnaires impacted upon consulting behaviour. Symptomatic non-consulters were predominantly younger, employed, with higher multiple deprivation scores than their GP practice mean. Of symptomatic non-consulters, 30% (18/61) consulted ≤1 month post-questionnaire, with comorbidities subsequently diagnosed for five participants. Interviews (n = 39) indicated three overarching differences between the views of consulting and non-consulting participants: concern over wasting their own as well as GP time; high tolerance threshold for symptoms; a greater tendency to self-manage symptoms. Conclusions: This first study to examine symptoms and consulting behaviour amongst a primary care population at ‘high- risk’ of lung cancer, found symptomatic patients who rarely consult GPs, might respond to a targeted symptom elicitation intervention. Such GP-based interventions may promote early diagnosis of lung cancer or other comorbidities, without burdening already pressurised services

    Appendectomy versus non-operative treatment for acute uncomplicated appendicitis in children: Study protocol for a multicentre, open-label, non-inferiority, randomised controlled trial

    Get PDF
    Background Appendectomy is considered the gold standard treatment for acute appendicitis. Recently the need for surgery has been challenged in both adults and children. In children there is growing clinician, patient and parental interest in non-operative treatment of acute appendicitis with antibiotics as opposed to surgery. To date no multicentre randomised controlled trials that are appropriately powered to determine efficacy of nonoperative treatment (antibiotics) for acute appendicitis in children compared with surgery (appendectomy) have been performed. Methods Multicentre, international, randomised controlled trial with a non-inferiority design. Children (age 5–16 years) with a clinical and/or radiological diagnosis of acute uncomplicated appendicitis will be randomised (1:1 ratio) to receive either laparoscopic appendectomy or treatment with intravenous (minimum 12 hours) followed by oral antibiotics (total course 10 days). Allocation to groups will be stratified by gender, duration of symptoms (≫ or \u3c48 hours) and centre. Children in both treatment groups will follow a standardised treatment pathway. Primary outcome is treatment failure defined as additional intervention related to appendicitis requiring general anaesthesia within 1 year of randomisation (including recurrent appendicitis) or negative appendectomy. Important secondary outcomes will be reported and a cost-effectiveness analysis will be performed. The primary outcome will be analysed on a non-inferiority basis using a 20% non-inferiority margin. Planned sample size is 978 children. Discussion The APPY trial will be the first multicentre randomised trial comparing non-operative treatment with appendectomy for acute uncomplicated appendicitis in children. The results of this trial have the potential to revolutionise the treatment of this common gastrointestinal emergency. The randomised design will limit the effect of bias on outcomes seen in other studies. Trial registration number clinicaltrials.gov:NCT02687464. Registered on Jan 13th 2016

    Detection of colorectal dysplasia using fluorescently labelled lectins.

    Get PDF
    Colorectal cancer screening using conventional colonoscopy lacks molecular information and can miss dysplastic lesions. We tested here the ability of fluorescently labelled lectins to distinguish dysplasia from normal tissue when sprayed on to the luminal surface epithelium of freshly resected colon tissue from the Apc(min) mouse and when applied to fixed human colorectal tissue sections. Wheat germ agglutinin (WGA) showed significantly decreased binding to adenomas in the mouse tissue and in sections of human colon from 47 patients. Changes in WGA binding to the human surface epithelium allowed regions containing normal epithelium (NE) or hyperplastic polyps (HP) to be distinguished from regions containing low-grade dysplasia (LGD), high-grade dysplasia (HGD) or carcinoma (C), with 81% sensitivity, 87% specificity and 93% positive predictive value (PPV). Helix pomatia agglutinin (HGA) distinguished epithelial regions containing NE from regions containing HP, LGD, HGD or C, with 89% sensitivity, 87% specificity and 97% PPV. The decreased binding of WGA and HPA to the luminal surface epithelium in human dysplasia suggests that these lectins may enable more sensitive detection of disease in the clinic using fluorescence colonoscopy.This work was supported by grants from Cancer Research UK (17242, 16465) to KMB.This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/srep2423
    corecore