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Abstract 

Metabolic imaging has been widely used to measure the early responses of tumors 

to treatment. Here we assess the abilities of positron emission tomography (PET) 

measurement of [18F]FDG uptake and magnetic resonance imaging (MRI) 

measurement of hyperpolarized [1-13C]pyruvate metabolism to detect early changes 

in glycolysis following treatment-induced cell death in human colorectal (Colo205) 

and breast adenocarcinoma (MDA-MB-231) xenografts in mice.  A TRAIL agonist 

that binds to human but not mouse cells induced tumor-selective cell death. Tumor 

glycolysis was assessed by injecting [1,6-13C2]glucose and measuring 13C-labeled 

metabolites in tumor extracts. Injection of hyperpolarized [1-13C]pyruvate induced 

rapid reduction in lactate labeling. This decrease, which correlated with an increase 

in histological markers of cell death and preceded decrease in tumor volume, 

reflected reduced flux from glucose to lactate and decreased lactate concentration. 

However, [18F]FDG uptake and phosphorylation was maintained following treatment, 

which has been attributed previously to increased [18F]FDG uptake by infiltrating 

immune cells. Quantification of [18F]FDG uptake in flow-sorted tumor and immune 

cells from disaggregated tumors identified CD11b+/CD45+ macrophages as the 

most [18F]FDG-avid cell type present, yet they represented <5% of the cells present 

in the tumors and could not explain the failure of [18F]FDG-PET to detect treatment 

response. MRI measurement of hyperpolarized [1-13C]pyruvate metabolism is 

therefore a more sensitive marker of the early decreases in glycolytic flux that occur 

following cell death than PET measurements of [18F]FDG uptake. 

 

Statement of Significance 

Findings demonstrate superior sensitivity of MRI measurement of hyperpolarized [1-

13C]pyruvate metabolism versus PET measurement of 18F-FDG uptake for detecting 

early changes in glycolysis following treatment-induced tumor cell death. 
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Introduction 

Tumors are increasingly categorized according to their biology (1) and a new 

generation of drugs are being developed that target the mutated pathways often 

found in tumors (2). Treatment response is typically assessed using morphological 

imaging (computed tomography (CT) or magnetic resonance imaging (MRI) (3)) with 

response being categorized according to guidelines such as the Response 

Evaluation Criteria of Solid Tumors (RECIST) (4). However, changes in size are 

often slow to manifest after treatment (5-7). To complement the advances in therapy, 

new imaging techniques are required that can accurately assess early treatment 

responses. These could facilitate switching non-responders to a more effective 

treatment, limit unnecessary side effects and costs of an ineffective therapy, and 

speed up clinical translation of new treatments.  

Biochemical changes can occur before volumetric changes and therefore 

targeted metabolic imaging could improve the timescale of response detection (8). 

Positron emission tomography (PET) using the glucose analogue, 2-([18F]fluoro)-2-

deoxy-D-glucose ([18F]FDG) has been used to assess treatment response, notably in 

lymphomas (9,10). However, concerns about the “flare” effect, a poorly understood 

phenomenon of increased tracer uptake soon after treatment attributed to agonistic 

effects of therapy on macrophage infiltration and activation, have often led to 

delayed [18F]FDG-PET imaging of treatment response (11-14). 

 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized [1-

13C]pyruvate metabolism has been shown to give an early indication of tumor 

treatment response (15,16). However, for hyperpolarized [1-13C]pyruvate to enter 

routine clinical practice, it must demonstrate that it can provide information not 

available from [18F]FDG studies. In this study we used a multivalent TRAIL agonist 
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(MEDI3039) targeting the human death receptor five (DR5) to activate the extrinsic 

pathway of apoptosis in xenograft models of human colorectal and breast cancer (17) 

and compared the ability of hyperpolarized [1-13C]pyruvate and [18F]FDG-PET to 

detect early response to treatment in vivo. A reduction in label flux between 

hyperpolarized [1-13C]pyruvate and the endogenous lactate pool preceded changes 

in tumor volume and reliably detected treatment response whereas PET 

measurements of [18F]FDG uptake largely failed to detect response.  

 

Materials and Methods 

Cell culture 

Colo205 human colon adenocarcinoma cells (ATCC, VA, USA) and MDA-MB-

231 triple-negative breast adenocarcinoma cells (ATCC) were transduced with a 

lentiviral vector expressing mStrawberry red fluorescent protein and luciferase (18). 

Colo205 cells were cultured in RPMI medium (Life Technologies, CA, USA), 

supplemented with 2 mM L-glutamine and 10% heat-inactivated fetal bovine serum 

(Life Technologies). MDA-MB-231 cells were cultured in DMEM (Life Technologies) 

supplemented with 10% FBS. Both cell lines tested negative for mycoplasma and 

were used within ten passages from the original stocks. 

  

Animal preparation 

Animal experiments were performed in compliance with a project licence 

issued under the Animals (Scientific Procedures) Act of 1986. Protocols were 

approved by the Cancer Research UK, Cambridge Institute Animal Welfare and 

Ethical Review Body.  
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Colo205 or MDA-MB-231 cells (5 × 106) were resuspended in 0.2 mL PBS or 

a 50:50 mix of Matrigel (Corning, NY, USA) and complete DMEM, respectively, and 

implanted subcutaneously in the flanks of female BALB/c nu/nu mice (Charles River, 

Wilmington, MA). Tumors were imaged when they reached ~0.8 cm3. For imaging 

mice were fasted for 6 – 8 h (19)  and kept in a warmed chamber (32ºC) for 1 h prior 

to induction of anesthesia using 1 – 2.5 % isoflurane (Isoflo, Abbotts Laboratories Ltd, 

Maidenhead, UK) in a 50:50 mix of air (1 L/min) and oxygen (1 L/min). MEDI3039, a 

TRAIL agonist, (Medimmune, Cambridge, UK) was administered intravenously (i.v.) 

at 0.4 mg/kg (17,20). 

 

Hyperpolarization of [1-13C]pyruvate 

A 44 mg sample of [1-13C]pyruvic acid (Cambridge Isotope Laboratories, 

Tewkesbury, MA, USA) containing 15 mM of OX063 trityl radical (GE Healthcare, 

Amersham, UK) and 1.5 mM of gadoterate meglumine (Dotarem, Guerbet, Roissy, 

France) was hyperpolarized at ~ 1.2 K by microwave irradiation at 94.110 GHz and 

100 mW in a 3.35 T Hypersense polarizer (Oxford Instruments, Abingdon, UK) for 

approximately 1 h (21). The frozen sample was rapidly dissolved in 6 mL buffer 

containing 40 mM HEPES, 94 mM NaOH, 30 mM NaCl and 100 mg/L EDTA heated 

to 180 ºC and pressurized to 10 bar to yield a final [1-13C]pyruvate concentration of 

approximately 75 mM.   

 

Imaging Treatment Response 

Colo205 (n=18, Table S1) and MDA-MB231 (n=22, Table S2) tumor-bearing 

mice underwent bioluminescence (BLI), fluorescence (FLI), MR and PET-CT imaging 

performed in the same 2 h sessions before and 24 h after treatment with MEDI3039 
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(Figure S1). FLI and BLI were performed using a Xenogen IVIS 200 (Perkin Elmer, 

MA, USA). Fluorescence images of mStrawberry expression were acquired using a 

DSRed filter (ex=500-550 nm, em=575-650 nm) and corrected for background 

autofluorescence. Bioluminescence images were acquired 5 min after intraperitoneal 

injection of 150 mg/kg of 15 mg/ml D-luciferin. Regions of interest (ROIs) were 

analyzed using Living Image v4.5 software (Perkin Elmer).  

After BLI, 12.9±1.8 MBq [18F]FDG (in approximately 100 µL) (Alliance Medical, 

Guildford, UK) was injected i.v.. MRI was performed in a 7.0 T horizontal bore 

magnet (Agilent, Palo Alto, CA) using an actively decoupled dual-tuned 13C/1H 

volume transmit coil (Rapid Biomedical, Rimpar, Germany) and a 20 mm diameter 

13C receiver coil (Rapid Biomedical). For anatomical reference eight axial T2-

weighted 1H images were acquired using a fast-spin echo sequence with a slice 

thickness of 2.5 mm, field-of-view 40 × 40 mm and matrix size of 256 × 256 points. 

13C images were acquired using spectral spatial (SpSp) pulses and a 3D dual-spin 

echo (DSE) acquisition (22). Flip angles were 7º for [1-13C]pyruvate and 45º for [1-

13C]lactate. Five [1-13C]pyruvate images were acquired prior to the first [1-13C]lactate 

image, after which each metabolite was excited with a temporal resolution of 2 s per 

metabolite. Injection of hyperpolarized [1-13C]pyruvate, which can cause transient 

hypoxia, was delayed for 1 h post-[18F]FDG injection to minimise any effects on 

[18F]FDG uptake (23). Hyperpolarized [1-13C]pyruvate (15 mL/kg) was injected i.v. 

over 8 s and the pulse sequence was started 2 s after the start of infusion. Images 

were acquired over 90 s and analyzed in Matlab (Mathworks, MA, USA). A 3D tumor 

ROI was defined on the T2-weighted image and the rate of hyperpolarized 13C label 

exchange was assessed by measuring the ratio of the areas under the pyruvate and 

lactate labeling curves (AUC). This ratio is related directly to the apparent first order 
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rate constant describing label exchange between the injected pyruvate and the 

endogenous lactate pool (24). 

A 15 min static PET acquisition began at 90 min post-injection of [18F]FDG 

using a nanoScan PET/CT (Mediso, Budapest, Hungary). A helical CT was acquired 

for anatomical reference and attenuation correction. PET images, with a nominal 

isotropic resolution of 0.3 mm, were reconstructed using a 3D ordered-subset 

expectation maximization (OSEM) method in one to three coincidence modes, eight 

iterations and six subsets. Images were normalized and corrected for decay, dead-

time, random events and attenuation. The images were analyzed using Vivoquant 

3.0 software (InviCRO, Massachusetts, USA). A 3D tumor ROI was drawn manually 

and Otsu thresholding applied to better delineate the tumor. Mean and maximum 

standardized uptake values (SUV) were calculated using:  

SUV=

cimg

ID/BW
 

where cimg is the activity concentration (MBq/mL) derived from the image ROI, ID is 

the injected dose and BW is the body weight of the animal. 

 

Dynamic [18F]FDG-PET 

 Three h PET scans were acquired in a separate cohort of Colo205 tumor-

bearing mice (n=9) following injection of 8.12 ± 1.13 MBq [18F]FDG before and 24 h 

after treatment with MEDI3039. Scans were reconstructed with a nominal isotropic 

resolution of 0.6 mm using a 3D OSEM method with one to five coincidence modes, 

two iterations and six subsets, with CT acquisition and PET corrections applied as 

for static image acquisitions. Scans were reconstructed into 50 time frames (5 s × 12, 

0–1 min; 2 min × 30, 0–60 min; 15 min × 8, 60–180 min). A 3D ROI drawn manually 

over the inferior vena cava between the level of the kidneys and diaphragm was 
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thresholded at 75% of the maximum activity and used as an image-derived input 

function. A 3D tumor ROI was Otsu thresholded on the 165 – 180 min dataset. 

Patlak analysis was used to estimate the net influx rate of [18F]FDG (ki) from the 

linear portion of the graph between 20 and 60 min (25). The mean r2 for linear 

regression fitting was 0.97±0.03.  

 

Dynamic contrast enhanced MRI  

A separate cohort of Colo205 tumor-bearing mice (n=3 per group, drug- and 

vehicle-treated) underwent dynamic contrast-enhanced (DCE)-MRI before and 24 h 

after treatment with MEDI3039. Baseline spin-lattice relaxation rates (R1,pre=1/T1) 

were measured using an inversion recovery fast low angle shot (FLASH) sequence 

(TR 5.5 ms, TE 2.5 ms, 10 s delay between acquisitions, 2 averages per inversion 

time). To obtain a pre-contrast R1 map these data were fitted voxel-by-voxel to a 

mono-exponential function: 

S = S0[1 – 2 e-TI/T1] 

 where TI is the inversion time. A T1-weighted gradient-echo pulse sequence was 

used with 4×1.5 mm thick axial slices with 0.25 mm gaps covering the tumor region, 

field-of-view 40×40 mm, data matrix 128×128, TR 110 ms, TE 9 ms. Ten baseline 

images were collected prior to the injection, over 8 s, of 200 μmoles/kg i.v. Dotarem 

(Guerbet). Forty images were acquired immediately after injection and a further nine 

timepoints generated from averaging blocks of nine images acquired every 10 min 

up to 90 min post-injection. Images were converted to R1 relaxation rate maps using:  

S = S0 
(1- e

-TR/T1)sinθ

1- e
-TR/T1 cosθ
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where S0 is the relaxed signal (TR >> T1) and θ is the flip angle used in the gradient-

echo sequence (27º). Changes in R1 were directly converted to gadolinium (Gd3+) 

concentration curves as described in (26). 

   

Whole-body [18F]FDG autoradiography and mStrawberry fluorescence imaging 

A separate cohort of Colo205 tumor-bearing mice (n=3 per group, drug- and 

vehicle-treated) were injected i.v. with [18F]FDG, culled after 90 min and immediately 

frozen by submersion in liquid nitrogen-cooled isopentane. Axial cryo-sections (10 

µm thick) were thaw-mounted onto glass slides (CM3050S Cryostat, Leica, Wetzlar, 

Germany). The slides were apposed to a storage phosphor screen (GE Healthcare) 

overnight to produce autoradiographs with a pixel size of 10 µm using a Typhoon 

Biomolecular Imager (Amersham). Red fluorescence images of the cryo-sections 

were acquired using a 532 nm laser, long-pass 550 nm filter and a pixel size of 10 

µm. The slides were subsequently H&E stained and fluorescence, autoradiography 

and H&E images were co-registered manually.  

 

Determining the cellular fate of [18F]FDG using fluorescence-activated cell 

sorting 

A separate cohort of Colo205 tumor-bearing mice (n=3 per group, drug- and 

vehicle-treated) were injected i.v. with 140±4.9 MBq [18F]FDG and after 90 min the 

tumors excised and single cell suspensions were prepared by digestion in 1 mg/mL 

collagenase I (Sigma-Aldrich, MO, USA) and 0.1 mg/mL DNase I (Roche, Penzburg, 

Germany) at 37ºC for 45 min with trituration at 15 min intervals. The cells were 

washed in PBS/2 mM EDTA and labeled by incubation with anti-CD45 (30-F11), anti-

CD11b (M1/70) (Biolegend, CA, USA) and live/dead fixable viability dye e780 
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(ThermoFisher Scientific, MA, USA) at 4ºC for 1 h. CD11b+/CD45+ phagocytes, 

CD45-/mStrawberry+ tumor cells, CD45-/mStrawberry- non-hematopoetic, non-

tumor cells and e780+ dead cells were sorted on a BD Influx flow sorter (BD 

Biosciences, NJ, USA). Flow cytometric data were analyzed using FlowJo V10.0 

(FlowJo LLC, OR, USA). The radioactivity (cpm) of each cell population was 

determined using a well-counter (Nuklear-Medizintechnik, Dresden, Germany) and 

converted to Bq using a calibration curve.  

 

 [1,6-13C2]glucose infusion and 13C and 1H NMR spectroscopy of tumor extracts 

 A separate cohort of Colo205 tumor-bearing mice (n=3 per group, drug- and 

vehicle-treated) were infused with [1,6-13C2]glucose as described previously (27). 

Tumors were freeze-clamped and blood obtained by cardiac puncture. Tissue 

extracts were prepared by addition of 5 µL/mg 2 M perchloric acid (PCA) and 

homogenization in a Precellys 24 homogenizer (Stretton Scientific, Stretton, UK). 

Extracts were pH corrected to 7.0, lyophilized and dissolved in deuterium oxide. Two 

µmoles trimethylsilylpropanoic acid (TMSP) were added as a chemical shift standard 

(0 p.p.m.). High-resolution 1H and 1H-decoupled 13C NMR spectra were acquired at 

294 K using a 5 mm probe and a 600 MHz NMR spectrometer (Bruker, MA, USA). 

The acquisition conditions for 13C spectroscopy were 30º flip angle, 15000 transients, 

spectral width 36.8 kHz, acquisition time 1.8 s and a relaxation delay 1.2 s. The 

acquisition conditions for 1H spectroscopy were 90º flip angle, 1024 transients, 

spectral width 10 kHz, acquisition time 3.3 s, relaxation delay 2 s. Data were phased 

and baseline corrected and peak integrals calculated using Topspin 4.0 (Bruker).  
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Analysis of [18F]FDG  and radiolabeled metabolites in tumor extracts 

 A separate cohort of Colo205 tumor-bearing mice (n=3 per group, drug- and 

vehicle-treated) were anesthetized and injected i.v. with 146.2±7.8 MBq [18F]FDG 

(∼200 µL).  After 90 min tumors were excised and homogenized in ice-cold 4 M PCA 

using a Precellys 24 homogenizer (Stretton Scientific, Stretton, UK). The extracts 

were neutralized with 8 M KOH and passed through a 0.2 μm syringe filter 

(Whatman, Maidstone, UK). Radio-high performance liquid chromatography 

(radioHPLC) was performed using a Dionex UltiMate 3000 HPLC system 

(ThermoFisher Scientific) (28). Samples (100 μL) were injected into the system, 

separated using a Partasil SAX 10 μm column (250 mm × 4.6 mm, Sigma-Aldrich) 

and eluted with a linear gradient of 300 mM sodium dihydrogen phosphate 

containing 2% methanol (A) and 2% methanol in water (B). The gradient profile was 

0–15 min 5% A, 15–25 min 50% A (isocratic), with a flow rate of 1.5 ml/min. 

Radioactivity was detected using a fLumo HPLC NaI detector (Berthold 

Technologies, Bad Wildbad, Germany) connected to the column outflow. Metabolite 

retention times for [18F]FDG and [18F]FDG-6-P were assigned using standards, while 

2-([18F]fluoro)-2-deoxy-6-phospho-D-gluconolactone ([18F]FD-PGL) and 2-

([18F]fluoro)-2-deoxy-D-glucose-1,6-bisphosphate ([18F]FDG-1,6-P2) were assigned 

using data from (28). 

 

Western blotting  

 Freeze-clamped tumor samples (n=7 per group, drug- and vehicle-treated) 

were homogenized in 10 μL/mg modified RIPA buffer (50 mM HEPES, 1 mM EDTA, 

0.7% sodium deoxycholate, 1% Nonidet P-40, 0.5 M lithium chloride, pH 7.6, 1 

cOmplete mini EDTA-free protease inhibitor (Sigma-Aldrich) using a Precellys 24 
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homogenizer. Proteins were separated by SDS-PAGE and transferred to a 

nitrocellulose membrane (iBlot 2, Thermofisher Scientific). Membranes were blocked 

with 1:1 Odyssey blocking buffer and TBS and incubated with antibody solutions 

(Table S3) at 4ºC overnight. Antibodies were detected using multiplexed IRDye 

secondary antibodies and images acquired using an Odyssey CLx (LI-COR 

Biosciences, NE, USA). 

 

Enzyme activity and ATP assays 

 Lactate dehydrogenase (LDH) activity was determined spectrophotometrically 

in tumor extracts (n=7 per group, drug- and vehicle-treated) prepared in RIPA buffer 

(29). Colorimetric kits were used to determine glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) activity (ab204732, Abcam, Cambridge, UK) and ATP 

concentration (ab83355, Abcam), while a fluorometric kit was used to determine 

pyruvate kinase (PK) activity (ab83432, Abcam). A PHERAstar FS microplate reader 

(BMG Labtech, Aylesbury, UK) was used for all spectrophotometric measurements. 

 

Immunohistochemistry 

 Sections of formalin-fixed paraffin-embedded tumors were stained for cleaved 

caspase-3 (CC3) and terminal deoxynucleotidyl transferase nick-end labeling 

(TUNEL) (20). Percentage positivity for each stain was calculated using positive pixel 

count algorithms in Aperio ImageScope 12.3.3 (Leica).  

 

Analysis 

Statistical and graphical analysis was performed using Prism v6.0 (GraphPad, CA, 

USA). Statistical tests performed were paired or unpaired t-tests with errors 
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representing standard deviation, unless stated otherwise. P values are summarized 

in figures as: <0.0001, ****; 0.0001 – 0.001, ***; 0.001 – 0.01, ** and 0.01 to 0.05, *. 

 

Results 

MEDI3039 induces cell death and tumor regression 

 Colo205 tumor-bearing mice (n=3) were treated with 0.4 mg/kg MEDI3039 i.v. 

weekly for four weeks and fortnightly thereafter (a total of fourteen doses over six 

months). There was a decrease in tumor volume from 0.95 ± 0.1 cm3 to 0.03 ± 0.02 

cm3 12 days after initial treatment, after which tumor volumes decreased to below 

the detection limit on T2-weighted MRI (Fig. 1a-d). Bioluminescence and red 

fluorescence intensity decreased over the first month, after which one tumor started 

to regrow while the other two continued to decrease in intensity (Fig. 1e-l). At six 

months the tumor that regrew had reached its size limit while in the other two mice 

the tumors remained undetectable.  

 

Histological and reporter gene evaluation of early response to therapy 

 Colo205 and MDA-MB-231 tumor-bearing mice underwent combined BLI, FLI, 

[1-13C]pyruvate-magnetic resonance imaging (MRI) and [18F]FDG-PET imaging 

before and 24 h after treatment with MEDI3039 (Colo205, n=10; MDA-MB-231, n=12) 

or drug vehicle (saline) (Colo205 n=8; MDA-MB-231, n=9) (Tables 1, S1 & S2). CC3 

staining increased from 21.8±11.6% to 58.51±14.4% (P = 0.0002, n=7 per group, 

drug- and vehicle-treated) in Colo205 tumors (Fig. 2 a-c)  and from 19±5.1% to 

57.7±19.3% (P =0.006, n=5 drug-treated and n=4 vehicle-treated) in MDA-MB-231 

tumors (Fig. 2 d-f). TUNEL staining increased from 8.0±6.7% to 19.4±6.3% (P=0.007, 

n=7 per group, drug- and vehicle-treated) in Colo205 tumors (Fig. 2 g-i) and 6.6±2.0% 
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to 21.1±6.1% (P=0.003, n=5 drug-treated and n=4 vehicle-treated) in MDA-MB-231 

tumors (Fig. 2 j-l). There was no significant decrease in tumor volumes after 24 h 

(Fig. S2 a-f).  mStrawberry fluorescence decreased in MDA-MB-231 tumors by 

45.3±28.6% (P=0.0002, n=12), but there was no change in Colo205 tumors (P=0.30, 

n=8). However, fluorescence in Colo205 tumors had decreased by 48 h after 

treatment (P=0.04; n=3). With the exception of one animal, tumor bioluminescence 

decreased after treatment, with 57.3±53.3% (P=0.0053; n=10) and 68.5±24.8% 

(P=<0.0001; n=12) decreases in Colo205 and MDA-MB-231 tumors, respectively. 

Measurements of ATP concentration in Colo205 tumor extracts showed a decrease 

from 0.36±0.1 to 0.14±0.05 μmol/g w.w. (P=0.0008; n=11) at 24 h after treatment. 

 

Imaging early response to MEDI3039 treatment using 13C MRI and PET 

 3D 13C MRS images showed a post-treatment decrease of the [1-

13C]lactate/[1-13C]pyruvate ratio (the ratio of the areas under the lactate and pyruvate 

labeling curves) in all animals, with a mean reduction of 42.2±15.9% (P=0.004; n=7) 

and 36.3±18.6% (P=0.007; n=7) in Colo205 (Fig. 3 a-c) and MDA-MB-231 (Fig. 3 d-e) 

tumors, respectively (Table 1). There was no change in [18F]FDG-PET SUVmax 

(2.1±0.3 to 2.1±0.4, P=0.82, n=7) or SUVmean (1.1±0.2 to 1.1±0.2 , P=0.6, n=7) in 

Colo205 tumors. In MDA-MB-231 tumors SUVmax did not change significantly 

(2.2±0.4 to 2.0±0.3, P=0.2, n=10), but there was a decrease in SUVmean (1.0±0.2 to 

0.9±0.2; P=0.048, n=10). However, this was a decrease of 14±21%, compared to a 

36±19% decrease in [1-13C]lactate/[1-13C]pyruvate ratio, indicating that changes in 

[1-13C]pyruvate metabolism were more sensitive for detecting response to treatment 

in these tumors.  
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Confirmation that [18F]FDG-PET fails to detect response to MEDI3039 

 [18F]FDG tumor/muscle ratios derived from autoradiography (Fig. S3 a-g) and 

mean percentage injected dose per gram (%ID/g) from well-counting of excised 

Colo205 tumors (Fig. S3 h) also did not change significantly following treatment 

(Table 1). However, in a separate cohort of Colo205 tumor-bearing mice (n=9), 

MEDI3039 treatment resulted in the net [18F]FDG influx rate (ki) decreasing from 

0.048±0.01 to 0.037±0.012 min-1 (P=0.051).  

 Colo205 tumor-bearing mice (n=3) were further imaged 24, 48 and 72 h after 

MEDI3039 treatment. Mean SUVmax showed no significant change, with a value of 

1.67±0.1 before treatment and 1.79±0.5 (P=0.77) 72 h after treatment, despite 

significant decreases in tumor volume. 

 

DCE-MRI showed an increase in perfusion after MEDI3039 treatment 

 In a separate cohort of Colo205 tumor-bearing mice (n=3) treatment response 

was assessed using DCE-MRI (Fig. S4). Tumor gadolinium (Gd3+) concentration 

increased in all mice after treatment from 0.05±0.009 to 0.09±0.02 mM at 10 min 

post-injection although the small sample size meant this was not statistically 

significant. The rate of contrast agent clearance was similar in pre-treatment and 

post-treatment tumors.  

  

Determination of the cellular fate of [18F]FDG using fluorescence-activated cell 

sorting of disaggregated tumors 

 Tumor cells (mStrawberry+, CD45-) comprised 78.3±5.2% of the sorted cells 

in untreated tumors (n=3) (Fig. 4 a,c) and 71.6 ± 9.4% in MEDI3039-treated tumors 
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(n=3) (Fig. 4 b,c) at 24 h after treatment (P = 0.3). Phagocytes (CD45+, CD11b+) 

comprised 1.6±0.4% of cells in untreated tumors and 2.3±1.7% after treatment (P = 

0.5) (Fig 4 a-c). Treatment resulted in a decrease in tumor cell [18F]FDG uptake 

(%ID/cell) from 2.1×10-9±5.0×10-10% to 7.5×10-10±2.7×10-10% (P=0.01). Phagocytes 

were the most [18F]FDG avid cell-type, taking up approximately 5× the uptake of 

tumor cells (Fig. 4d). Treatment also decreased [18F]FDG uptake per phagocyte, 

from 1.2×10-8±2.5×10-9% to 6.5×10-9±1.9×10-9 (P=0.04). Due to there being 

approximately 50× and 30× more tumor cells than phagocytes in untreated and 

treated tumors, respectively, the contribution of phagocytes to [18F]FDG uptake in 

the tumor as a whole remained small despite their greater [18F]FDG uptake per cell. 

Correction for % cell type, represented as %ID per million total cells, showed that in 

untreated tumors uptake in the tumor cell population was 2×10-3±5×10-4% per million 

total cells in the tumor, whereas in phagocytes it was 2×10-4±8.7×10-5% per million 

total cells. After treatment uptake in the tumor cell population was 6×10-4±5.5×10-4%, 

whereas in the phagocyte population it was 1×10-4±5.6×10-5% (Fig. 4e).  

 

MEDI3039-induced changes in the expression of enzymes and transporters 

involved in [18F]FDG and [1-13C]pyruvate metabolism in Colo205 tumors  

Treatment decreased the expression of MCT1 and to a lesser extent MCT4 

(P=0.005 and P=0.02, respectively, n=7) (Fig. 5 a-b). LDH activity and expression 

were unchanged, (P=0.07 and P=0.9, respectively, n=7) (Table S4, Fig. 5 c,h). 

Expression of GLUT1 and GLUT3 decreased (P=0.01 and P=0.0001, respectively, 

n=7) (Fig. 5 d-e), while HK2 expression was unchanged (P=0.1, n=7) (Fig. 5f). PARP 

cleavage by caspase-3, a feature of apoptosis, increased significantly after 
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MEDI3039 treatment (P=0.005, n=7) (Fig. 5g).  There were no significant changes in 

the activities of GAPDH (Fig. 5i) or PK (Fig. 5j). 

 

Measurement of glycolytic flux in MEDI3039-treated Colo205 tumors using [1,6-

13C2]glucose 

 Colo205 tumor-bearing mice (n=3 per group, drug- and vehicle-treated) were 

infused with [1,6-13C2]glucose for 150 min.  13C enrichment of blood glucose was 

50.0±7.2% and was unaffected by treatment. The expected tumor metabolite 

labelling patterns are shown in Fig. 6 c.  There was a decrease in tumor [3-

13C]lactate concentration from 1259±297 μmoles/g w.w. to 363±148 μmoles/g w.w. 

24 h after treatment (P=0.01) (Fig. 6 a,b,d), a decrease in [3-13C]alanine 

concentration, from 233±59 to 37.6±19 μmoles/g w.w. (P=0.03) and a decrease in 

TCA cycle metabolite and [4-13C]glutamate labelling (Fig. 6 a-b). There was no 

significant change in [1,6-13C2]glucose concentration in the tumors, which decreased 

from 425±169 to 279±135 μmoles/g w.w. (P=0.3).  

 

Measurement of [18F]FDG and its metabolites in tumor extracts 

 HPLC peaks at 2 and 6 min corresponded to [18F]FDG and [18F]FDG-6-P, 

respectively (Fig. S5 a-b). The ratio of [18F]FDG/[18F]FDG-6-P was 6.2±3% in 

untreated tumors and 7.0±3.7% after treatment (n=3 per group, drug- and vehicle-

treated, P=0.8) (Fig. S5 c). HPLC peaks were also observed at 8.5, 9, 20 and 22.5 

min. The peak at 20 min, assigned to [18F]FD-6-PGL (28), was decreased in treated 

tumors suggesting that MEDI3039 treatment reduced flux into the pentose 

phosphate pathway. 
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Discussion  

 Imaging with hyperpolarized [1-13C]pyruvate has the potential to be used 

clinically to detect early tumor responses to treatment (15,30). Pre-clinical studies in 

breast cancer and glioma models demonstrated reductions in label flux from [1-

13C]pyruvate to lactate prior to a reduction in tumor volume (31,32), while in other 

studies hyperpolarized [1-13C]pyruvate was no more sensitive than measurements of  

tumor volume or [18F]FDG uptake in detecting treatment response (33-35).  

 Drug treatment can have direct effects on metabolic pathways, for example, 

etoposide can inhibit oxidative phosphorylation (36,37) and PI3K inhibitors can 

decrease LDH expression (38). Therefore, any effects observed with metabolic 

imaging may be drug-specific, rather than a generic measure of treatment response 

(36).  Here we used a targeted agent to induce apoptosis that avoided potential 

direct effects of the drug on glycolytic enzyme expression. This allowed study of the 

specific effects that cell death has on the tumor metabolism of hyperpolarized [1-

13C]pyruvate and [18F]FDG. Engineering the tumor cells to express mStrawberry and 

luciferase gave independent markers that could be used to confirm treatment 

response in vivo. Although MEDI3039 activates the extrinsic pathway of apoptosis 

other mechanisms of cell death, particularly secondary necrosis, undoubtedly co-

exist following treatment and are not discriminated between in these experiments 

(39).  

 Survival increased from under two weeks in control animals to a minimum of 

six months in treated mice and there was complete response in two out of three 

tumors. Treatment-induced cell death was demonstrated histologically by marked 
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increases in CC3 and TUNEL staining at 24 h, and functionally by a decrease in 

mStrawberry fluorescence at 24 h and 48 h in MDA-MB-231 and Colo205 tumors, 

respectively. The delayed decrease in Colo205 tumors was attributed to delayed 

clearance of the mStrawberry protein, possibly indicating a higher proportion of 

macrophage uptake and apoptotic as compared to necrotic cell death (40). Cell 

death resulted in a decrease in ATP concentration in both tumor types and 

consequent reduction in bioluminescence. In both tumor types label flux from 

hyperpolarized [1-13C]pyruvate to lactate was decreased and this preceded changes 

in tumor volume. 

 Exchange of hyperpolarized 13C label between pyruvate and lactate depends 

on tumor perfusion, MCT and LDH expression and lactate pool size.  Since DCE-

MRI measurements showed a small increase in tumor perfusion and there was no 

change in LDH expression the decrease in exchange must have been due to the 

large decrease in lactate pool size, which through the accompanying decrease in 

NADH concentration will decrease LDH activity, and by decreased MCT1 and MCT4 

transporter expression, which will decrease pyruvate transport (41,42).  We have 

shown previously, albeit in another tumor cell type, that LDH and the MCTs have 

comparable flux control coefficients for the exchange and that the exchange is 

linearly dependent on lactate concentration (41,42).  Given the large decrease in 

lactate concentration and more modest decrease in MCT expression it seems likely 

that the decreased exchange is largely the result of the decrease in lactate 

concentration, resulting from a decrease in glycolytic flux, and consequent decrease 

in LDH activity.    Furthermore, we observed significant PARP cleavage, which has 

previously been correlated with depletion of the NAD(H) pool and consequent 

decrease of LDH activity (33,34).  



 21 

 The lack of a significant decrease in [18F]FDG uptake in treated tumors was 

surprising given the degree of cell death observed histologically. [18F]FDG 

accumulation in tissues is multi-factorial, with no consistent relationship between 

[18F]FDG uptake and GLUT and hexokinase expression (43,44). In dynamic PET 

measurements [18F]FDG uptake remained irreversible 3 h after injection 

demonstrating that glucose-6-phosphatase activity, previously implicated in the 

failure of response detection with [18F]FDG-PET, was minimal in these tumors (45). 

Although we observed significant decreases in GLUT1 and GLUT3 expression, HK2 

expression did not change.  Therefore, in these tumors HK2 activity appears to 

dominate [18F]FDG trapping, which would explain the persistence of [18F]FDG uptake 

following treatment. Although the levels of ATP were decreased in the tumor these 

were evidently sufficient to maintain [18F]FDG phosphorylation. In Colo205 tumors, 

the trend towards a decrease in net [18F]FDG influx rate (ki) after treatment indicates 

that a kinetic analysis may detect changes that are not apparent from the SUV. 

However, the hyperpolarized [1-13C]pyruvate/[1-13C]lactate ratio, in which pyruvate 

delivery is accounted for, may be a more practical clinical approach than kinetic 

analysis of [18F]FDG uptake, which requires prolonged dynamic image acquisition 

and arterial blood sampling. 

 13C NMR measurements of [1,6-13C2]glucose metabolism and radioHPLC 

measurements of [18F]FDG metabolism showed that treatment of Colo205 tumors 

reduced glycolytic flux to lactate and flux into the TCA cycle but that phosphorylation 

of [18F]FDG was maintained. This suggests that, contrary to the generally accepted 

view, [18F]FDG-6-P accumulation in tumors is not necessarily reflective of glycolytic 

flux and that the differential response seen with [18F]FDG-PET and [1-13C]pyruvate is 

not due to a switch to oxidative metabolism after treatment. That hyperpolarized [1-
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13C]pyruvate can detect changes in glycolytic flux, but not [18F]FDG, is a reflection of 

the fact that the rate of exchange between pyruvate and lactate is partly dependent 

on the lactate concentration, which is determined primarily by glycolytic flux, whereas 

the accumulation of [18F]FDG is only dependent on transport and phosphorylation 

(41).  

 The failure of [18F]FDG to detect treatment response has frequently been 

attributed to activation of phagocytic cells and, to a lesser extent other immune cells, 

resulting in a paradoxical increase in tumor [18F]FDG uptake (12,14,46,47). Here 

[18F]FDG uptake per cell was quantified by sorting labeled cell populations using 

FACS.  We defined a phagocytic population as CD45+/CD11b+, presumed to be 

mostly macrophages (48). The majority of this population was also positive for 

mStrawberry+, both before and after treatment, indicating tumor cell phagocytosis. 

Although macrophages were the most glycolytically active cell type, their low 

numbers meant that the majority of [18F]FDG] in the tumor accumulated in tumor 

cells. Using micro-autoradiography Kubota et al. reported that high [18F]FDG uptake 

corresponded to areas infiltrated with macrophages, which is frequently cited as the 

basis of the metabolic flare effect (49). Although our findings corroborate this 

previous work, we show that while macrophages are the most [18F]FDG-avid cell-

type, they represent such a small component of the tumors that their overall 

contribution to [18F]FDG uptake is relatively insignificant. This excludes inflammatory 

cell infiltration as a cause of the failure of [18F]FDG to detect treatment response in 

this study.  

 The general implications of our findings are limited by the use subcutaneous 

human xenografts in immuno-compromised mice, which have greatly reduced 

numbers of T-cells. However, the proportion of macrophages in Colo205 tumors was 
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similar to the proportion reported in most early human colorectal tumors (<5%) (50). 

In tumors with a greater degree of immune cell infiltration [18F]FDG uptake may have 

a more significant impact on [18F]FDG-PET results. A further limitation of the 

experiments performed to elicit mechanisms responsible for changes in [18F]FDG 

and [1-13C]pyruvate metabolism was the small cohort sizes in some experiments 

(n=3 in each group for several of the experiments). Nevertheless, the majority of 

results were statistically significant.  

 

Conclusion 

 We have shown that hyperpolarized [1-13C]pyruvate can be used to detect 

treatment-induced tumor cell death, with decreases in lactate labeling preceding a 

reduction in tumor volume, whereas there was no significant change in [18F]FDG or 

glucose uptake, despite a large decrease in glycolytic flux. Tumor [18F]FDG-6-P 

accumulation was not significantly affected by inflammatory cell infiltration. 
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Tables 

 

 
T2 MRI Bioluminescence Fluorescence [1-13C]pyruvate MRSI [18F]FDG-PET [18F]FDG autoradiography [18F]FDG excised tumors Histology 

Tumor type 
Volume 

(cm3) 
Mean Radiance (p/s/cm2/sr) 

Mean Radiant Efficiency 
([p/s/cm2/sr] / [µW/cm2]) 

Lactate/pyruvate ratio SUVmax SUVmean 
ki  

(min-1) 
Tumor/muscle ratio %ID/g 

CC3 
(% positivity) 

TUNEL 
(% positivity) 

Colo205 
      

     

Pre-treatment 
0.879 ± 0.425  
(n = 10) 

2.455 × 109 ± 3.445 × 109  

(n = 10) 
1.465 × 109 ± 9.009 × 108  

(n = 8) 
2.525 ± 0.549  
(n = 7) 

2.103 ± 0.250  
(n = 7) 

1.131 ± 0.160  
(n = 7) 

0.048 ± 0.01 
(n = 9) 

    

Post-treatment 
0.829 ± 0.491  
(n = 10) 

4.723 × 108 ± 5.678 × 108  
** (n = 10) 

2.068 × 109 ± 1.981 × 109  
(n = 8) 

1.414 ± 0.391  
** (n = 7) 

2.134 ± 0.362  
(n = 7) 

1.087 ± 0.190  
(n = 7) 

0.037 ± 0.012 
(n = 9) 

4.096 ± 0.268 
(n = 3) 

7.613 ± 0.697 
(n = 6) 

58.510 ± 14.440 
*** (n = 7) 

19.360 ± 6.311 
** (n = 7) 

Pre-control 
0.705 ± 0.252  
(n = 7) 

6.961 × 108 ± 9.705 × 108  
(n = 8) 

1.373 × 109 ± 1.494 × 109  
(n = 7) 

1.975 ± 0.548  
(n = 5) 

2.261 ± 0.580  
(n = 7) 

1.230 ± 0.223  
(n = 7) 

     

Post-control 
0.721 ± 0.289  
(n = 7) 

1.092 × 109 ± 1.406 × 109  
(n = 8) 

1.288 × 109 ± 1.191 × 109  
(n = 7) 

2.106 ± 0.630  
(n = 5) 

2.219 ± 0.161  
(n = 7) 

1.182 ± 0.206  
(n = 7) 

 
4.011 ± 0.224  
(n = 3) 

8.846 ± 0.828 
(n = 6) 

21.800 ± 11.580 
(n = 7) 

8.005 ± 6.728 
(n = 7) 

MDA-MB-231 
      

     

Pre-treatment 
0.939 ± 0.488  
(n = 8) 

1.288 × 109 ± 4.629 × 108  
(n = 12) 

3.002 × 109 ± 1.180 × 109  
(n = 12) 

2.236 ± 0.386  
(n = 7) 

2.219 ± 0.399  
(n = 10) 

1.045 ± 0.172  
(n = 10) 

     

Post-treatment 
0.862 ± 0.450  
(n = 8) 

4.148 × 108 ± 4.340 × 108 

 **** (n = 12) 
1.634 × 109 ± 1.015 × 109  

*** (n = 12) 
1.382 ± 0.331  
** (n = 7) 

1.977 ± 0.346  
(n = 10) 

0.877 ± 0.158 *  
(n = 10) 

   
57.650 ± 19.300 
** (n = 5) 

21.120 ± 6.061 
** (n = 5) 

Pre-control 
0.664 ± 0.281  
(n = 9) 

1.541 × 109 ± 1.503 × 109  
(n = 9) 

2.349 × 109 ± 1.067× 109  
(n = 9) 

2.126 ± 0.588  
(n = 9) 

2.125 ± 0.558  
(n = 9) 

0.998 ± 0.214  
(n = 9) 

     

Post-control 
0.686 ± 0.304  
(n = 9) 

1.067 × 109 ± 6.385 × 108  
(n = 9) 

2.174 × 109 ± 1.110 × 109  
(n = 9) 

2.442 ± 0.607  
(n = 9) 

2.039 ± 0.685  
(n = 9) 

0.913 ± 0.275  
(n = 9) 

   
18.980 ± 5.092 
(n = 4) 

6.644 ± 1.944 
(n = 4) 

 

Table 1. Imaging, ex vivo and histological detection of treatment response 24 h after MEDI3039 treatment. 
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Figure legends 
 
 
Figure 1. MEDI3039 treatment induces long-term regression of Colo205 tumors. (a-
d) Tumor volumes (n=3) were determined by T2-weighted MRI measurements. (e-h) 
mStrawberry fluorescence; (i-l) bioluminescence. The bioluminescence scale has 
been decreased by a factor of 10 for the images acquired on day 29. 

 
Figure 2. Histological assessment of tumor cell death following treatment with 
MEDI3039.  Tumor sections were stained for cleaved caspase 3 (CC3) and TUNEL 
(n = 7 per group, drug- and vehicle-treated). (a-c) CC3 and (g-i) TUNEL staining of 
Colo205 tumor sections taken 24 h after treatment of the animals with MEDI3039 
(treatment) or drug vehicle (control).  (d-f) CC3 and (j-l) TUNEL staining of MDA-MB-
231 tumor sections taken 24 h after treatment of the animals with MEDI3039 
(treatment) or drug vehicle (control). 

 
Figure 3. Comparison of hyperpolarized [1-13C]lactate/[1-13C]pyruvate ratios and 
[18F]FDG-PET SUVmax values in Colo205 and MDA-MB-231 tumors before and 24 h 
after treatment with MEDI3039. (a) A Colo205 tumor-bearing mouse before (top two 
rows of images) and after treatment (bottom two rows of images). Maximum intensity 
projections overlaid on bone reconstructions (top and bottom rows) and an axial slice 
through the tumor (middle two rows). The tumor is indicated by white arrows and a 
dashed outline. (b & d) [1-13C]lactate/[1-13C]pyruvate ratio before and after treatment 
in (b) Colo205 (n = 7 drug-treated and n = 5 vehicle-treated) and (d) MDA-MB-231 (n 
= 7 drug-treated and n = 9 vehicle-treated) tumors. (c & e) [18F]FDG SUVmax before 
and after treatment in (c) Colo205 and (e) MDA-MB-231 tumors. Pre- and post- 
treatment images are identically scaled, PET images are scaled from an SUV of 0 – 
1.5.  

 
Figure 4. [18F]FDG uptake in different cell populations in Colo205 tumors (n = 3 per 
group, drug- and vehicle-treated).  Tumors were excised 24 h after treatment of the 
mice with MEDI3039 or drug vehicle (control). Disaggregated tumors were flow 
sorted and radioactivity in the different cell fractions was counted. Example sort 
profiles from (a) a control tumor and (b) a tumor treated with MEDI3039.  (c) The 
percentage of different cell types in the tumors; (d) The percentage injected dose per 
cell for each cell type and (e) the percentage injected dose for each population of 
cells (i.e. the %ID per cell corrected for the percentage of each cell type) displayed 
as %ID per million sorted cells. 

 
Figure 5.  Changes in membrane transporter and enzyme expression and enzyme 
activity changes following treatment with MEDI3039.  Arrows above the western 
blots indicate samples from post-treatment tumors. Expression of (a) MCT-1; (b) 
MCT-4; (c) LDH-A; (d) GLUT1; (e) GLUT3; (f) HK2; (g) PARP; and enzyme activity of 
(h) LDH; (i) GAPDH and (j) pyruvate kinase. Abbreviations: cPARP – cleaved PARP; 
uPARP – uncleaved PARP. 
 
Figure 6. 13C NMR measurements of Colo205 tumor extracts following [1,6 
13C2]glucose infusions into tumor-bearing mice 24 h after drug vehicle (n = 3) or 
MEDI3039 (n = 3) treatment. Example 13C NMR spectra from (a) a control tumor and 
(b) a treated tumor. Chemical shift assignments: 1, β-glucose C1; 2, α-glucose C1; 3, 
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β-glucose C6; 4, α-glucose C6; 5, lactate C3; 6, alanine C3. Insets: the spectra 
between 30 and 37 p.p.m. showing the difference in C3 and C4 glutamate labeling 
before treatment and after treatment. (c) Diagram showing the 13C labeling pattern 
(blue) following [1,6 13C2]glucose infusion. (d) Comparison of 13C labeled glucose 
and lactate concentrations in control and MEDI3039 treated tumors. Abbreviations: 
GLU – glutamate; S – singlet; D – doublet.   
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