9,009 research outputs found
The stellar mass-accretion rate relation in T Tauri stars and brown dwarfs
Recent observations show a strong correlation between stellar mass and
accretion rate in young stellar and sub-stellar objects, with the scaling
holding over more than four orders of magnitude
in accretion rate. We explore the consequences of this correlation in the
context of disk evolution models. We note that such a correlation is not
expected to arise from variations in disk angular momentum transport efficiency
with stellar mass, and suggest that it may reflect a systematic trend in disk
initial conditions. In this case we find that brown dwarf disks initially have
rather larger radii than those around more massive objects. By considering disk
evolution, and invoking a simple parametrization for a shut-off in accretion at
the end of the disk lifetime, we show that such models predict that the scatter
in the stellar mass-accretion rate relationship should increase with increasing
stellar mass, in rough agreement with current observations.Comment: 4 pages, 2 figures. Accepted for publication in ApJ Letter
Investigation of mixed element hybrid grid-based CFD methods for rotorcraft flow analysis
Accurate first-principles flow prediction is essential to the design and development of rotorcraft, and while current numerical analysis tools can, in theory, model the complete flow field, in practice the accuracy of these tools is limited by various inherent numerical deficiencies. An approach that combines the first-principles physical modeling capability of CFD schemes with the vortex preservation capabilities of Lagrangian vortex methods has been developed recently that controls the numerical diffusion of the rotor wake in a grid-based solver by employing a vorticity-velocity, rather than primitive variable, formulation. Coupling strategies, including variable exchange protocols are evaluated using several unstructured, structured, and Cartesian-grid Reynolds Averaged Navier-Stokes (RANS)/Euler CFD solvers. Results obtained with the hybrid grid-based solvers illustrate the capability of this hybrid method to resolve vortex-dominated flow fields with lower cell counts than pure RANS/Euler methods
Method and apparatus for instantaneous band ratioing in a reflectance radiometer
A hand-held instrument is provided to compare information from selected infrared and visible bands in the 0.4 to 2.5 micrometer range, to perform ratioing via a dividing circuit (17) and to directly read out, via a display system (18), ratio values in a continuous digital display. The dual-beam, ratioing radiometer contains two optical trains (10, 12), each having two repeater lenses (L1a, L1b and L2a, L2b) and a cooled lead sulfide detector (D1, D2). One of the trains (10) is pivotal to facilitate measurements at distances ranging from about 1 meter to infinity. The optical trains are intersected by a set of two coaxially-mounted filter wheels (F1, F2), each containing up to five interference filters and slits to pass radiation filtered by the other. Filters with band passes as narrow as 0.01 micrometer are used in the region 0.4 to 2.5 micrometers. The total time for a calibration and measurement is only a few seconds. It is known from previous field studies using prior art devices, that materials, e.g., clay minerals, and carbonate minerals such as limestone, have unique spectral properties in the 2.0 to 2.5 micrometer region. Using properly chosen spectral filters, and ratioing the signals to remove the effect of topography on the brightness measured, the instrument can be used for real-time analysis of reflecting materials in the field. Other materials in the broader range of 0.4 to 2.5 micrometers (and even beyond) could be similarly identified once the reflectance spectrum of the material is established by any means
Current management strategies for peritoneal mesothelioma
Mesothelioma of the peritoneum is a distinct entity that requires multidisciplinary care to improve oncological outcomes. In this article, we review the current management strategies discussed at the PSOGI meeting in Washington DC 2016 and provide evidence based recommendations for diagnosis and management of this disease
Multispectral fingerprinting for improved in vivo cell dynamics analysis
Background:
Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC) as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks.
Results:
We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets.
Conclusions:
Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail
- ā¦