235 research outputs found

    Purine nucleoside phosphorylase from Schistosoma mansoni in complex with ribose-1-phosphate

    Get PDF
    A binary complex between a low-molecular-weight purine nucleoside phosphorylase and ribose-1-phosphate is described for the first time and comparisons with known ternary complexes are drawn

    Using Amino Acid Correlation and Community Detection Algorithms to Identify Functional Determinants in Protein Families

    Get PDF
    Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms, resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that provide insight into the relationship between different communities, the individual importance of community members and the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/α-lactalbumin family), we show how our method and the proposed parameters and procedures are related to biological characteristics observed in these protein families, highlighting their potential use in protein characterization and gene annotation

    The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 Å resolution

    Get PDF
    AbstractBackground: The allosteric hexameric enzyme glucosamine-6-phosphate deaminase from Escherichia coli catalyses the regulatory step of N-acetylglucosamine catabolism, which consists of the isomerisation and deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonia. The reversibility of the catalysis and its rapid-equilibrium random kinetic mechanism, among other properties, make this enzyme a good model for studying allosteric processes.Results: Here we present the structure of P6322 crystals, obtained in sodium acetate, of GlcN6P deaminase in its ligand-free T state. These crystals are very sensitive to X-ray radiation and have a high (78%) solvent content. The active-site lid (residues 162–185) is highly disordered in the T conformer; this may contribute significantly to the free-energy change of the whole allosteric transition. Comparison of the structure with the crystallographic coordinates of the R conformer (Brookhaven Protein Data Bank entry 1dea) allows us to describe the geometrical changes associated with the allosteric transition as the movement of two rigid entities within each monomer. The active site, located in a deep cleft between these two rigid entities, presents a more open geometry in the T conformer than in the R conformer.Conclusions: The differences in active-site geometry are related to alterations in the substrate-binding properties associated with the allosteric transition. The rigid nature of the two mobile structural units of each monomer seems to be essential in order to explain the observed kinetics of the deaminase hexamer. The triggers for both the homotropic and heterotropic allosteric transitions are discussed and particular residues are assigned to these functions. A structural basis for an entropic term in the allosteric transition is an interesting new feature that emerges from this study

    Two- and Three-Dimensional Quantitative Structure-Activity Relationships Studies on a Series of Liver X Receptor Ligands

    Get PDF
    Liver X receptor (LXR) is an attractive drug target for the development of novel therapeutic agents for the treatment of dyslipidaemia and cholestasis. In the present work, comparative molecular field analysis (CoMFA) and hologram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of potent LXR ligands. Significant correlation coefficients (CoMFA, r2 = 0.98 and q2 = 0.69; HQSAR, r2 = 0.99 and q2 = 0.85) were obtained, indicating the potential of the models for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values obtained from the 2D and 3D models were in good agreement with the experimental results. The final QSAR models, along with the information obtained from 3D steric and electrostatic contour maps and 2D contribution maps should be useful for the design of novel LXR ligands having improved potency

    Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling

    Get PDF
    Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.State of Sao Paulo Research Foundation (FAPESP)[1998/14138-2]State of Sao Paulo Research Foundation (FAPESP)[05/59833-5]State of Sao Paulo Research Foundation (FAPESP)[08/58316-5

    Male lifespan extension with 17â α estradiol is linked to a sexâ specific metabolomic response modulated by gonadal hormones in mice

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145263/1/acel12786.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145263/2/acel12786_am.pd

    X-ray diffraction and in vivo studies reveal the quinary structure of Trypanosoma cruzi nucleoside diphosphate kinase 1: a novel helical oligomer structure

    Get PDF
    Trypanosoma cruzi is a flagellated protozoan parasite that causes Chagas disease, which represents a serious health problem in the Americas. Nucleoside diphosphate kinases (NDPKs) are key enzymes that are implicated in cellular energy management. TcNDPK1 is the canonical isoform in the T. cruzi parasite. TcNDPK1 has a cytosolic, perinuclear and nuclear distribution. It is also found in non-membrane-bound filaments adjacent to the nucleus. In the present work, X-ray diffraction and in vivo studies of TcNDPK1 are described. The structure reveals a novel, multi-hexameric, left-handed helical oligomer structure. The results of directed mutagenesis studies led to the conclusion that the microscopic TcNDPK1 granules observed in vivo in T. cruzi parasites are made up by the association of TcNDPK1 oligomers. In the absence of experimental data, analysis of the interactions in the X-ray structure of the TcNDPK1 oligomer suggests the probable assembly and disassembly steps: dimerization, assembly of the hexamer as a trimer of dimers, hexamer association to generate the left-handed helical oligomer structure and finally oligomer association in a parallel manner to form the microscopic TcNDPK1 filaments that are observed in vivo in T. cruzi parasites. Oligomer disassembly takes place on the binding of substrate in the active site of TcNDPK1, leading to dissociation of the hexamers. This study constitutes the first report of such a protein arrangement, which has never previously been seen for any protein or NDPK. Further studies are needed to determine its physiological role. However, it may suggest a paradigm for protein storage reflecting the complex mechanism of action of TcNDPK1.Fil: Gómez Barroso, Juan Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Miranda, Mariana Reneé. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Pereira, Claudio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Garratt, Richard Charles. Universidade de Sao Paulo; BrasilFil: Aguilar, Carlos Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentin

    Lifespan extension in female mice by early, transient exposure to adult female olfactory cues

    Get PDF
    Several previous lines of research have suggested, indirectly, that mouse lifespan is particularly susceptible to endocrine or nutritional signals in the first few weeks of life, as tested by manipulations of litter size, growth hormone levels, or mutations with effects specifically on early-life growth rate. The pace of early development in mice can also be influenced by exposure of nursing and weanling mice to olfactory cues. In particular, odors of same-sex adult mice can in some circumstances delay maturation. We hypothesized that olfactory information might also have a sex-specific effect on lifespan, and we show here that the lifespan of female mice can be increased significantly by odors from adult females administered transiently, that is from 3 days until 60 days of age. Female lifespan was not modified by male odors, nor was male lifespan susceptible to odors from adults of either sex. Conditional deletion of the G protein Gαo in the olfactory system, which leads to impaired accessory olfactory system function and blunted reproductive priming responses to male odors in females, did not modify the effect of female odors on female lifespan. Our data provide support for the idea that very young mice are susceptible to influences that can have long-lasting effects on health maintenance in later life, and provide a potential example of lifespan extension by olfactory cues in mice
    corecore