3,467 research outputs found

    Cosmic microwave background snapshots: pre-WMAP and post-WMAP

    Full text link
    Abbreviated: We highlight the remarkable evolution in the CMB power spectrum over the past few years, and in the cosmological parameters for minimal inflation models derived from it. Grand unified spectra (GUS) show pre-WMAP optimal bandpowers are in good agreement with each other and with the one-year WMAP results, which now dominate the L < 600 bands. GUS are used to determine calibrations, peak/dip locations and heights, and damping parameters. These CMB experiments significantly increased the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with `prior' probabilities on the parameters. A minimal inflation parameter set is applied in the same way to the evolving data. Grid-based and and Monte Carlo Markov Chain methods are shown to give similar values, highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated parameter eigenmodes. After marginalizing over the other cosmic and experimental variables for a weak+LSS prior, the pre-WMAP data of Jan03 cf. the post-WMAP data of Mar03 give Omega_{tot} =1.03^{+0.05}_{-0.04} cf. 1.02^{+0.04}_{-0.03}. Adding the flat prior, n_s =0.95^{+0.07}_{-0.04} cf. 0.97^{+0.02}_{-0.02}, with < 2\sigma evidence for a log variation of n_s. The densities have concordance values. The dark energy pressure-to-density ratio is not well constrained by our weak+LSS prior, but adding SN1 gives w_Q < -0.7. We find \sigma_8 = 0.89^{+0.06}_{-0.07} cf. 0.86^{+0.04}_{-0.04}, implying a sizable SZ effect; the high L power suggest \sigma_8 \sim 0.94^{+0.08}_{-0.16} is needed to be SZ-compatible.Comment: 36 pages, 5 figures, 5 tables, Jan 2003 Roy Soc Discussion Meeting on `The search for dark matter and dark energy in the Universe', published PDF (Oct 15 2003) is http://www.cita.utoronto.ca/~bond/roysoc03/03TA2435.pd

    Control theory for principled heap sizing

    Get PDF
    We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach

    Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic

    Get PDF
    A recent study identified a fungal isolate from the Antarctic leafy liverwort Cephaloziella varians as the ericoid mycorrhizal associate Rhizoscyphus ericae. However, nothing is known about the wider Antarctic distribution of R. ericae in C. varians, and inoculation experiments confirming the ability of the fungus to form coils in the liverwort are lacking. Using direct isolation and baiting with Vaccinium macrocarpon seedlings, fungi were isolated from C. varians sampled from eight sites across a 1875-km transect through sub- and maritime Antarctica. The ability of an isolate to form coils in aseptically grown C. varians was also tested. Fungi with 98–99% sequence identity to R. ericae internal transcribed spacer (ITS) region and partial large subunit ribosomal (r)DNA sequences were frequently isolated from C. varians at all sites sampled. The EF4/Fung5 primer set did not amplify small subunit rDNA from three of five R. ericae isolates, probably accounting for the reported absence of the fungus from C. varians in a previous study. Rhizoscyphus ericae was found to colonize aseptically-grown C. varians intracellularly, forming hyphal coils. This study shows that the association between R. ericae and C. varians is apparently widespread in Antarctica, and confirms that R. ericae is at least in part responsible for the formation of the coils observed in rhizoids of field-collected C. varians

    Stellar Kinematics in the Complicated Inner Spheroid of M31: Discovery of Substructure Along the Southeastern Minor Axis and its Relationship to the Giant Southern Stream

    Get PDF
    We present the discovery of a kinematically-cold stellar population along the SE minor axis of the Andromeda galaxy (M31) that is likely the forward continuation of M31's giant southern stream. This discovery was made in the course of an on-going spectroscopic survey of red giant branch (RGB) stars in M31 using the DEIMOS instrument on the Keck II 10-m telescope. Stellar kinematics are investigated in eight fields located 9-30 kpc from M31's center (in projection). A likelihood method based on photometric and spectroscopic diagnostics is used to isolate confirmed M31 RGB stars from foreground Milky Way dwarf stars: for the first time, this is done without using radial velocity as a selection criterion, allowing an unbiased study of M31's stellar kinematics. The radial velocity distribution of the 1013 M31 RGB stars shows evidence for the presence of two components. The broad (hot) component has a velocity dispersion of 129 km/s and presumably represents M31's virialized spheroid. A significant fraction (19%) of the population is in a narrow (cold) component centered near M31's systemic velocity with a velocity dispersion that decreases with increasing radial distance, from 55.5 km/s at R_proj=12 kpc to 10.6 km/s at R_proj=18 kpc. The spatial and velocity distribution of the cold component matches that of the "Southeast shelf" predicted by the Fardal et al. (2007) orbital model of the progenitor of the giant southern stream. The metallicity distribution of the cold component matches that of the giant southern stream, but is about 0.2 dex more metal rich on average than that of the hot spheroidal component. We discuss the implications of our discovery on the interpretation of the intermediate-age spheroid population found in this region in recent ultra-deep HST imaging studies.Comment: 23 pages, 16 figures, 2 tables, accepted for publication in the Astrophysical Journal. Changes from previous version: expanded discussion in sections 4.2 and 7.2, removal of section 7.1.4 and associated figure (discussion moved to section 7.1.2

    The helminth parasite heligmosomoides polygyrus attenuates EAE in an IL-4Rα-dependent manner

    Get PDF
    Helminth parasites are effective in biasing Th2 immunity and inducing regulatory pathways that minimize excessive inflammation within their hosts, thus allowing chronic infection to occur whilst also suppressing bystander atopic or autoimmune diseases. Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory lesions within the central nervous system; there are very limited therapeutic options for the progressive forms of the disease and none are curative. Here, we used the experimental autoimmune encephalomyelitis (EAE) model to examine if the intestinal helminth Heligmosomoides polygyrus and its excretory/secretory products (HES) are able to suppress inflammatory disease. Mice infected with H. polygyrus at the time of immunization with the peptide used to induce EAE (myelin-oligodendrocyte glycoprotein, pMOG), showed a delay in the onset and peak severity of EAE disease, however, treatment with HES only showed a marginal delay in disease onset. Mice that received H. polygyrus 4 weeks prior to EAE induction were also not significantly protected. H. polygyrus secretes a known TGF-β mimic (Hp-TGM) and simultaneous H. polygyrus infection with pMOG immunization led to a significant expansion of Tregs; however, administering the recombinant Hp-TGM to EAE mice failed to replicate the EAE protection seen during infection, indicating that this may not be central to the disease protecting mechanism. Mice infected with H. polygyrus also showed a systemic Th2 biasing, and restimulating splenocytes with pMOG showed release of pMOG-specific IL-4 as well as suppression of inflammatory IL-17A. Notably, a Th2-skewed response was found only in mice infected with H. polygyrus at the time of EAE induction and not those with a chronic infection. Furthermore, H. polygyrus failed to protect against disease in IL-4Rα−/− mice. Together these results indicate that the EAE disease protective mechanism of H. polygyrus is likely to be predominantly Th2 deviation, and further highlights Th2-biasing as a future therapeutic strategy for MS

    Quantum Monte Carlo Study of Hole Binding and Pairing Correlations in the Three-Band Hubbard Model

    Full text link
    We simulated the 3-band Hubbard model using the Constrained Path Monte Carlo (CPMC) method in search for a possible superconducting ground state. The CPMC is a ground state method which is free of the exponential scaling of computing time with system size. We calculated the binding energy of a pair of holes for systems up to 6×46 \times 4 unit cells. We also studied the pairing correlation functions versus distance for both the d-wave and extended s-wave channels in systems up to 6×66 \times 6. We found that holes bind for a wide range of parameters and that the binding increased as the system size is increased. However, the pairing correlation functions decay quickly with distance. For the extended s channel, we found that as the Coulomb interaction UdU_d on the Cu sites is increased, the long-range part of the correlation functions is suppressed and fluctuates around zero. For the dx2y2d_{x^2 - y^2} channel, we found that the correlations decay rapidly with distance towards a small positive value. However, this value becomes smaller as the interaction UdU_d or the system size is increased.Comment: 21 pages, 13 Postscript figures, Submitted to Phys. Rev.

    From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large NcN_c Limit

    Get PDF
    A systematic study of multiquark exotics with one or Nc1N_c-1 heavy quarks in the large NcN_c limit is presented. By binding a chiral soliton to a heavy meson, either a normal NcN_c-quark baryon or an exotic (Nc+2)(N_c+2)-quark baryon is obtained. By replacing the heavy quark with Nc1N_c-1 heavy antiquarks, exotic (2Nc2)(2N_c-2)-quark and 2Nc2N_c-quark mesons are obtained. When Nc=3N_c = 3, they are just the normal triquark baryon QqqQqq, the exotic pentaquark baryon QqˉqˉqˉqˉQ\bar q\bar q\bar q\bar q, tetraquark di-meson QˉQˉqq\bar Q \bar Q qq and the hexaquark di-baryon QˉQˉqˉqˉ barqqˉ\bar Q \bar Q \bar q \bar q\ bar q \bar q respectively. Their stabilities and decays are also discussed. In particular, it is shown that the ``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure
    corecore