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Summary 16 

 A recent study identified a fungal isolate from the Antarctic leafy liverwort Cephaloziella 17 

varians as the ericoid mycorrhizal associate Rhizoscyphus ericae. However, nothing is known 18 

about the wider Antarctic distribution of R. ericae in C. varians, and inoculation experiments 19 

confirming the ability of the fungus to form coils in the liverwort are lacking. 20 

 Using direct isolation and baiting with Vaccinium macrocarpon seedlings, we isolated fungi 21 

from C. varians sampled from eight sites across a 1,875 km transect through sub- and maritime 22 

Antarctica, from Bird Island on South Georgia (54 °S, 38 °W) through to Alexander Island (71 23 

°S, 68 °W) on the western Antarctic Peninsula. We also tested the ability of an isolate to form 24 

coils in aseptically-grown C. varians.  25 

 Fungi with 98-99% sequence identity to R. ericae internal transcribed spacer region and partial 26 

large subunit ribosomal (r)DNA sequences were frequently isolated from C. varians at all sites 27 

sampled. The EF4/Fung5 primer set did not amplify small subunit rDNA from three of five R. 28 

ericae isolates, probably accounting for the reported absence of the fungus from C. varians in a 29 

previous study. R. ericae was found to colonize aseptically-grown C. varians intracellularly, 30 

forming hyphal coils. 31 

 This study shows that the association between R. ericae and C. varians is apparently widespread 32 

in Antarctica and confirms that R. ericae is at least in part responsible for the formation of the 33 

coils observed in rhizoids of field-collected C. varians. 34 

 35 

 36 

Key words: Cephaloziella varians, dark septate endophyte, ericoid mycorrhiza, Rhizoscyphus 37 

ericae, liverwort, maritime and sub-Antarctica 38 

39 
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Introduction 40 

A range of leafy hepatics in the Jungermannopsida consistently form associations with 41 

ascomycetous fungi (Read et al., 2000), forming ‘mycothalli’ (Boullard, 1988). In a study of British 42 

hepatics, species of the leafy liverwort genus Cephaloziella were found to possess fungal 43 

associations restricted to rhizoids, with over half of the rhizoid tips colonized (Duckett et al., 1991). 44 

Fungal colonization of rhizoids is characterized by dense intracellular growth that appears 45 

analogous to ericoid mycorrhizal coils (Selosse, 2005). The functional nature of the relationship 46 

between liverworts and their endophytic fungi is not known, but the formation of structures similar 47 

to those seen in ericoid mycorrhizal roots suggests an active role in plant survival (Read et al., 48 

2000).  49 

Cephaloziella varians (Gottsche) Steph. is the most widespread species of liverwort in 50 

Antarctica, occurring in the maritime, continental and sub-Antarctic regions (Bednarek-Ochyra et 51 

al., 2000). As in British Cephaloziella, hyphae and rudimentary coils of ascomycetous fungal 52 

endophytes are present in the rhizoids of this leafy liverwort collected from Botany Bay, Granite 53 

harbour (77 °S, 162 °E) and the Bailey Peninsula in the Windmill Islands (66 °S, 110 °E), both in 54 

eastern continental Antarctica (Williams et al., 1994). Colonies of isolates from C. varians collected 55 

from these locations are slow-growing, waxy and become dark brown to black with age (Williams 56 

et al., 1994). Using the ITS1/ITS4 primer set, Chambers et al. (1999) sequenced the internal 57 

transcribed spacer (ITS) region of an isolate from the Bailey Peninsula and showed it to have a high 58 

(99.4%) sequence identity to the type culture of the ericoid mycorrhizal fungus Hymenoscyphus 59 

ericae, recently renamed as Rhizoscyphus ericae (D.J. Read) W.H. Zhuang & Korf. (Zhang & 60 

Zhuang, 2004). In contrast, direct PCR analysis using the EF4/Fung5 primer set, which targeted a 61 

region of the small subunit (SSU) ribosomal (r)RNA gene, suggested that fungi bearing strong 62 

affinities to R. ericae are absent from C. varians at Rothera Point in the maritime Antarctic 63 

(Jumpponen et al., 2003). 64 
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Given the current uncertainty about the distribution of R. ericae in C. varians in Antarctica, we 65 

addressed the question of whether or not R. ericae is consistently isolated from the tissues of the 66 

liverwort collected from a wide range of locations in the maritime and sub-Antarctic. We also tested 67 

whether the EF4/Fung5 primer set might not be appropriate for the amplification of R. ericae DNA, 68 

possibly owing to the presence of introns in the SSU rDNA (Jumpponen et al., 2003). A re-69 

inoculation experiment also determined whether or not R. ericae forms structures similar to those 70 

observed in field-collected shoots. Finally, we tested the ability of Antarctic R. ericae to form 71 

hyphal coils in the roots of an ericaceous plant species. 72 

 73 

Materials and Methods 74 

Field sampling 75 

 76 

Cephaloziella varians was collected during the 2002 and 2005 austral summers from field sites at 77 

Bird Island on South Georgia, Signy, Lynch and Coronation Islands in the South Orkneys, King 78 

George and Livingston Islands in the South Shetlands, and Adelaide and Alexander Islands on the 79 

western Antarctic Peninsula (Fig. 1; Table 1). Sites on the South Orkney, South Shetland and Bird 80 

Islands were reached by helicopter or small boat from ships. The site on Adelaide Island was 81 

reached on foot from the nearby British Antarctic Survey Rothera Research Station, and that at 82 

Alexander Island was reached by fixed-wing aircraft fitted with skis, also from Rothera. At least 83 

five samples of C. varians mat (up to 50 × 50 mm) were removed from each site with a knife wiped 84 

with sterilant (Virkon
®

; Antec International Ltd., Sudbury, UK) between samples and placed in a 85 

re-sealable polythene bag. 86 

 87 

Treatment of plant material after sampling 88 

 89 
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Plants of C. varians sampled from the South Shetland Islands were initially stored for several days 90 

at 4°C in cool boxes, then maintained for 12 wk in growth cabinets set to a 16 h cycle of light (300 91 

µmol photons m
-2

 s
-1

 at 6°C) and 8 h of darkness (4°C). Those sampled from the South Orkney and 92 

Adelaide Islands were maintained for 5 to 8 wk under the growth conditions described above and 93 

were sprayed with sterile distilled water (dH2O) to keep tissues moist. Plants sampled from 94 

Alexander Island were stored for 4 h in a cool box prior to return to Rothera research station. Those 95 

sampled from Bird Island were frozen within several hours of collection at –20°C for 8 wk. 96 

All samples except those from Alexander Island were returned to the UK. On arrival, 97 

samples from the South Orkney, South Shetland and Adelaide Islands were transported at 4°C to 98 

the ANNEX growth room facility at the University of Sheffield. Plants from these locations were 99 

transferred to sterile Petri dishes (100 mm  100 mm; Bibby Sterilin, Stone, UK) and sprayed as 100 

necessary with sterile dH2O to keep tissues moist. Samples from different sites were kept in 101 

separate closed dishes. Plants were maintained under the same growth conditions as those described 102 

above for between 1 and 16 wk.   103 

 104 

Microscopy analyses of field-collected Cephaloziella varians  105 

 106 

Unstained or stained C. varians shoots, collected 6 wk previously from Rothera Point and 107 

transferred back to the UK in a growth cabinet under the conditions described above, were 108 

examined under bright field illumination (Olympus BX51; Olympus, Southall, UK). For staining, 109 

shoots were cleared in 10% KOH for 24 h, washed in dH2O, acidified in 10% HCl for 1 h, and 110 

transferred to 0.05% aniline blue (0.25 g aniline blue, 25 ml dH2O, 475 ml lactic acid) for 1 h and 111 

then to de-staining solution (25 ml dH2O, 475 ml lactic acid) for 2 h. Shoots were then mounted on 112 

microscope slides in lactoglycerol (14:1:1; lactic acid: glycerol: dH2O). 113 

 114 

Isolation of fungi from Cephaloziella varians 115 
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 116 

Fungi were isolated directly from shoots collected from Bird, Signy, King George, Adelaide and 117 

Alexander Islands. Samples from Bird Island were defrosted overnight at 4°C prior to isolations. 118 

Fungi from Alexander Island were isolated immediately after return to Rothera research station. 119 

From each of the five samples of C. varians collected from a given site, c. 25 mg (FW) of the 120 

uppermost 10 mm of shoot was placed into 10 ml sterile dH2O in a Universal bottle. Shoots were 121 

serially washed in 20 changes of sterile dH2O for 5 min per wash on a wrist-action shaker at 7 beats 122 

s
-1

. Shoots were blotted on sterile filter paper, cut into 1-2 mm length segments and plated into 123 

either 10% modified Melin-Norkrans agar (MMN; acidified to pH 45 with 10% HCl) medium or 124 

1% malt extract agar (MEA) medium in 90 mm Petri dishes. Each dish contained five segments of 125 

shoot, plated equidistantly in the agar medium. Between 12 and 20 dishes of each agar medium 126 

were prepared per site. Dishes were incubated in the dark at 18°C and checked daily for 14 d then 127 

weekly for 10 wk. The number of fungal colonies present was recorded, and the most common 128 

fungal morphotype sub-cultured onto 10% MMN and 1% MEA media and stored in the dark at 129 

18°C. 130 

 131 

Isolation of fungi from Vaccinium macrocarpon bait seedlings 132 

 133 

Seeds of V. macrocarpon were sterilized for 10 min in calcium hypochlorite solution (1:28, w/v) 134 

followed by three rinses in sterile dH2O, and were germinated on 1.5% plant agar medium (Duchefa 135 

Biochemie, Haarlem, The Netherlands). Five uncontaminated, two-week-old V. macrocarpon 136 

seedlings were each planted into C. varians mat from Coronation, Lynch, Signy, King George, 137 

Livingston and Adelaide Islands. The mats were placed into Petri dishes, which were sealed with 138 

Parafilm and maintained under the same growth conditions as those described above for 8 wk. 139 

Five 10 mm root segments were arbitrarily selected from each of the five V. macrocarpon 140 

plants growing in C. varians collected from each site. Five of the 25 segments from each site were 141 
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each placed into 10 ml sterile dH2O, were serially washed as described above, and, after blotting, 142 

plated into 10% MMN and 1% MEA media. Between 10 and 15 dishes of each agar medium were 143 

prepared, incubated at 18°C and checked as above.  144 

 145 

Characterization and quantification of fungi   146 

 147 

Macroscopic and microscopic features of colonies were noted after growth for 20 d in the dark at 148 

18°C on 1% MEA medium. Sub-cultures of each were transferred to 5°C in an attempt to induce 149 

sporulation (Richard & Fortin, 1973). The type cultures of Rhizoscyphus ericae (Read 100 and 101) 150 

were used for comparison with fungal isolates. Isolation frequency was calculated as the number of 151 

colonies / the total number of liverwort or root segments plated × 100%. 152 

 153 

Molecular characterization of dominant fungal morphotype 154 

 155 

DNA extraction and sequencing. Using the method of Cubero et al. (1999), DNA was extracted 156 

from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, 157 

King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F 158 

(Gardes & Bruns, 1993) and the universal primer ITS4 (White et al., 1990) were used to amplify the 159 

ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 160 

and NL8 (Egger, 1995) were used to amplify a partial 5’ section of the LSU, including the D1/D2 161 

region, from three of the isolates. 162 

PCR amplifications were carried out in 34 l volumes, consisting of 30 l ReddyMix PCR 163 

mix (Abgene, Epsom, UK), 2 l template DNA and 1 l of each primer, on a PTC-225 Peltier 164 

thermal cycler (MJ Research Inc., Watertown, MA, USA). Each amplification included a negative 165 

control in which 2 l of sterile ddH2O was substituted for the DNA template. Ice-cold reaction 166 

tubes were preheated for initial denaturation at 94°C for 5 min, followed by 30 cycles of 167 
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denaturation at 94°C for 1 min, annealing at 54°C for 1 min and synthesis at 72°C for 70 s, 168 

followed by a final extension step of 68°C for 10 min. Detectable PCR products were purified and 169 

target rDNA regions sequenced using a MegaBACE 1000 sequencer (Molecular Dynamics, 170 

Sunnyvale, CA, USA). The sequencing reactions were repeated for both forward and reverse 171 

primers. 172 

 173 

Phylogenetic analyses. Consensus sequences were produced for the ITS and LSU sequences 174 

obtained from this study using BioEdit (version 7.0.4.1; Hall, 1999), initially with the ClustalW 175 

option (Thompson et al., 1994), and thereafter manually by visual inspection. NCBI BLAST 176 

(Altschul et al., 1997) and Fasta searches (Fasta fungi and Fasta env) (Pearson & Lipman, 1988; 177 

http://www.ebi.ac.uk/fasta33/nucleotide.html) were carried out for each ITS and LSU consensus 178 

sequence. The exact positioning of the ITS1, 5.8S and ITS2 along sequences was determined using 179 

paired alignments with BLAST matches and information deposited in GenBank. ITS sequences 180 

were then aligned with the Hymenoscyphus (≡ Rhizoscyphus) ericae aggregate (sensu Vrålstad et 181 

al., 2000) alignment deposited in TreeBASE by Hambleton & Sigler (2005) 182 

(http://www.treebase.org/treebase/; study accession no. S1393). In order to align sequences from 183 

the current study with more distantly related taxa in the deposited alignment, the 5’ partial SSU 184 

sequence and the first c. 23 bp of ITS1 were removed. ITS sequences were further shortened to 318-185 

397 bp by removing the 3’ partial LSU sequence and the last c. 61 bp of ITS2 to accommodate 186 

shorter sequences. Similarly, LSU sequences were shortened to 397 bp to align with those from a 187 

broad selection of Leotiomycetous taxa and selected Pezizomycetes. The aligned sequences were 188 

then subjected to phylogenetic analysis using the neighbour-joining (NJ) method (Saitou & Nei, 189 

1987) in MEGA version 3.1 (Kumar et al., 2004) with the Kimura two-parameter model. Gaps or 190 

missing data were excluded from analyses and a uniform rate of mutation was assumed across sites. 191 

Robustness of phylogenetic trees was assayed using 1000 NJ bootstrap replications (Felsenstein, 192 

1985). Sequences were deposited in GenBank under accession numbers 000000-000000. 193 

http://www.ebi.ac.uk/fasta33/nucleotide.html
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 194 

 195 

Comparison of ITS1F/ITS4 and EF4/Fung5 primer sets. Three isolates of the dominant fungal 196 

morphotype from C. varians tissue and two from V. macrocarpon bait seedling roots were used for 197 

these analyses. Two Phoma herbarum isolates were used for comparison. All seven isolates 198 

originated from Rothera Point. DNA extraction from the isolates and PCR amplification were 199 

carried out as described above for the primer sets ITS1F/ITS4 and EF4/Fung5 (Smit et al., 1999), 200 

except that the PCR cycle parameters used for the latter set were those used by Jumpponen et al. 201 

(2003). The PCR products were separated on 2% agarose gel. 202 

 203 

Synthesis experiments 204 

 205 

Inoculation of Cephaloziella varians. Axenic gametophytes of C. varians were obtained from 206 

spores. Sporophytes were carefully removed from laboratory-grown C. varians using sterile fine 207 

forceps under a sterile flow hood. Several sporophytes were attached to the lid of a 90 mm Petri 208 

dish using sterile lanolin so that the sporophyte hung c. 5 mm above the surface of 1.5% plant agar 209 

medium. Dishes were sealed with Parafilm and maintained under the same growth conditions as 210 

those described above. A fresh lid was placed on the dish under a sterile flow hood when spores 211 

were seen on the agar medium surface. Ten gametophytes were each aseptically transferred to Petri 212 

dishes containing 1.5% plant agar medium when they reached c. 1 mm diameter. An 8 mm diameter 213 

1.2% water agar medium plug, inoculated 14 d previously with an isolate of the most frequent 214 

fungal morphotype from Rothera Point, was positioned 20 mm from each of five C. varians 215 

gametophytes. An uninoculated 1.2% water agar plug was placed 20 mm from the each of the 216 

remaining gametophytes. Petri dishes were sealed with Parafilm, wrapped with aluminium foil and 217 

a hole was made in the foil above the gametophyte in order to admit light. Gametophytes were 218 

grown under the same conditions as those described above. 219 
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Shoots were harvested 8 wk after hyphae had reached the gametophytes. They were viewed 220 

unstained or stained with aniline blue under bright field or UV fluorescence.  221 

 222 

Inoculation of Vaccinium macrocarpon. Polycarbonate Magenta
®

 growth vessels (Sigma-Aldrich, 223 

St Louis, MO, USA), fitted with 0.22 m filter lids, were filled to a depth of 30 mm with 180 ml of 224 

20% Rorison’s nutrient solution (pH 5.4, with 0.5 g L
-1

 activated charcoal and 15 g L
-1

 agar). 225 

Vessels and growth medium were sterilised at 121°C for 15 min and cooled to room temperature. 226 

Five axenically-grown V. macrocarpon seedlings, germinated as described above, were 227 

transferred to each of two growth vessels, and were inoculated with 1 ml macerate, consisting of 228 

either uninoculated or inoculated pieces of 1.2% water agar (20  10  6 mm) in 15 ml sterile 229 

dH2O. Inoculated water agar had been cut under sterile conditions from the growing margin of the 230 

same isolate from Rothera Point that was used to inoculate C. varians, which had been grown for 2 231 

wk at 18°C in the dark. The growth vessels were sealed with Parafilm, transferred to the growth 232 

room and maintained under the same growth conditions as those described above. Plants were 233 

grown for 12 wk prior to harvest.  234 

Upon harvest, V. macrocarpon roots were rinsed free of growth medium with sterile dH2O 235 

and were qualitatively assessed for the presence of ericoid coils in cortical cells. Roots from each 236 

plant were observed unstained or stained with aniline blue under bright field and UV fluorescence, 237 

as described above. For staining, V. macrocarpon roots were dipped in 10% HCl, transferred to 238 

0.05% aniline blue for 10 min and rinsed in sterile dH2O. 239 

 240 

Results 241 

Microscopy analyses of field-collected Cephaloziella varians  242 

 243 

A network of dark septate ‘runner’ hyphae (c. 2 m diameter) covered the caulid surfaces of C. 244 

varians sampled from Rothera Point (Fig. 2a, b). Hyphae commonly entered caulid cells (Fig. 2b) 245 



 11 

and colonised rhizoids (Fig. 2c), both in the apical and distal regions of the liverwort. Dark septate 246 

hyphae on caulid surfaces formed a continuum with intracellular pigmented, hyaline and aniline 247 

blue-staining septate hyphae, which were frequently observed to proliferate within cells, forming 248 

hyphal coils (Fig. 2d). The basal regions of rhizoids were also filled with hyphal coils (not shown). 249 

Pigmented, hyaline and aniline blue-staining septate hyphae were apparently able to pass from cell 250 

to cell by directly penetrating the cell wall, with no evidence of cell necrosis. 251 

 252 

Characterization and quantification of fungi 253 

 254 

A single morphotype, morphotype 1, was the most frequently-isolated fungus from C. varians 255 

tissue collected from Bird, Signy, King George, Adelaide and Alexander Islands (Table 2). Between 256 

one and three other morphotypes of dematiaceous fungi were isolated from C. varians from each of 257 

these locations (Table 2). Colonies of morphotype 1 were slow growing, with a mean radial 258 

extension rate of 3.0 (± 0.13) mm wk
-1

, were often waxy and lacked dense aerial hyphae, except for 259 

in the centre of the colony, where ropes were formed. After 20 d, colonies of the morphotype were 260 

dark greenish grey from above with a white margin and were dark brown with a cream margin from 261 

below. They became dark brown with age. Sporulation structures were not observed in any cultures 262 

of morphotype 1, including those incubated at 5°C. 263 

Colonies of morphotype 1 also dominated the fungal isolates from roots of V. macrocarpon 264 

bait seedlings grown in C. varians mats from Coronation, Lynch, Signy, King George, Livingston 265 

and Adelaide Islands (Table 2). It was the only morphotype isolated from V. macrocarpon roots 266 

grown in mats from Coronation, King George and Adelaide Islands. One or two other morphotypes 267 

of fungi were isolated from each of the other locations (Table 2). Fungi were not isolated from the 268 

roots of uninoculated V. macrocarpon bait seedlings. 269 

 270 

Molecular characterization of dominant fungal morphotype  271 
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 272 

Phylogenetic analyses. Isolates of morphotype 1 produced single amplification products of c. 600 273 

bp for both ITS and LSU sequences. Negative controls produced no amplification products. 274 

Consensus sequences of c. 425-610 bp were produced. Two isolates, Vm_ByP_S13 and 275 

Vm_MaP_S20 (see footnote to Table 3 for an explanation of isolate codes), were missing all or a 276 

large proportion of the ITS2 region and were therefore removed from all further analyses. These 277 

sequences matched R. ericae (AY394907) with 99% identity over their entire lengths. The sequence 278 

identity between all other morphotype 1 isolates was 97-100% over the entire ITS1-5.8S-ITS2 279 

region. All morphotype 1 sequences retrieved R. ericae as the top taxonomically-identified BLAST 280 

match, showing 98-99% sequence identity over the entire ITS1-5.8S-ITS2 region (Table 3). 281 

Morphotype 1 isolates and the isolate from C. varians on the Bailey Peninsula in eastern Antarctica 282 

(AF069439) had 97-99% sequence identity over the ITS1-5.8S-ITS2 region. NJ analysis of 283 

morphotype 1 partial ITS sequences showed them to group with 99% bootstrap support within the 284 

H. ericae aggregate and with 81% bootstrap support within the R. ericae clade, alongside sequences 285 

obtained for the isolate from the Bailey Peninsula, and others from vascular plant species in 286 

Australia, Norway, Canada, the USA and the UK (Fig. 3).  287 

The sequence identity between morphotype 1 isolates Cv_PoC_D3, Cv_RoP_D5 and 288 

Cv_MoV_M1 was 97-99% over the partial LSU region. BLAST searches retrieved R. ericae 289 

sequences as the best match for the three LSU sequences, showing 98-99% identity (Table 3). NJ 290 

analysis clustered the partial LSU sequences together in a 73% bootstrap-supported monophyletic 291 

group with R. ericae sequences (Fig. 4).  292 

 293 

Comparison of ITS1F/ITS4 and EF4/Fung5 primer sets. All seven isolates produced 294 

amplification products of c. 600 bp for the ITS1F/ITS4 primer combination, whereas only the 295 

morphotype 1 isolates Vm_RoP_23 and Vm_RoP_22 and the two Phoma herbarum isolates 296 

produced amplification products with the EF4/Fung5 primer set (not shown). The amplification 297 
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products from the former two isolates, the first of which produced a very faint band, were c. 1000 298 

bp and those from the latter two were c. 600 bp in length (not shown). The morphotype 1 isolates 299 

Cv_RoP_D6, Cv_RoP_D5 and Cv_RoP_R07 failed to amplify with the EF4/Fung5 primer set. 300 

 301 

Synthesis experiments 302 

 303 

Inoculation of Cephaloziella varians. The patterns of colonization observed in the inoculated 304 

plants of C. varians were similar to those seen in field-collected plants. The morphotype 1 isolate 305 

Cv_RoP_D5 was found to colonize and form penetration structures on rhizoid and axial cells of C. 306 

varians shoots. As in field-collected shoots, R. ericae hyphae grew within rhizoid (Fig. 5a) and 307 

axial cells. Hyphae ramified throughout the entire shoot, forming a loose network of runner hyphae 308 

over axial surfaces, and frequently formed intracellular hyaline septate hyphal coils (Fig. 5b). In 309 

some rhizoids, hyphae branched into fan-like structures at the base of the cell, with hyphae directly 310 

penetrating the cell wall and entering neighbouring cells. There was no fungal colonization of 311 

uninoculated shoots. 312 

 313 

Inoculation of Vaccinium macrocarpon. Well-defined intracellular hyphal coils frequently 314 

developed in root epidermal cells of V. macrocarpon seedlings that had been inoculated with 315 

Cv_RoP_D5 (not shown). There was no fungal colonization of uninoculated control plants. 316 

 317 

Discussion 318 

The current study has shown R. ericae to be present in C. varians from eight locations in the 319 

Antarctic, spanning a 1,875 km southward transect from Bird Island on South Georgia through to 320 

Moutonnée Valley on Alexander Island, at the southern limit of the maritime Antarctic. Direct 321 

isolations showed the fungus to grow from as many as half of the segments of liverwort shoot 322 

plated into agar media, with relatively few colonies of other morphotypes isolated. The study has 323 
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thus significantly extended the known range of the Cephaloziella varians-Rhizoscyphus ericae 324 

association in Antarctica, and, along with the data of Chambers et al. (1999), strongly suggests that 325 

the association is a consistent relationship in Antarctic plant communities. Other than the widely-326 

documented occurrence of lichens in the Antarctic (e.g. Øvstedal & Smith, 2001), we are unaware 327 

of any other reports in the literature of consistent associations between autotrophs and fungi on the 328 

continent. 329 

The data reported here are at variance with those of Jumpponen et al. (2003), who found no 330 

evidence that R. ericae was present at Rothera Point, a location from which several isolates of the 331 

fungus were obtained in the current study. It is apparent from the data shown here that the 332 

EF4/Fung5 primer set used by Jumpponen et al. (2003) in their direct PCR study is not suitable for 333 

the amplification of R. ericae DNA: using this primer set, SSU region DNA from three of five R. 334 

ericae isolates from Rothera Point failed to amplify, and the c. 1000 bp product size of the other 335 

two isolates, compared with the c. 600 bp products of two Phoma herbarum isolates, implied the 336 

presence of a c. 400 bp insertion in the SSU region of the R. ericae DNA. As suggested by 337 

Jumpponen et al. (2003), it is possible that the presence of introns, which are frequent in the SSU 338 

rDNA of R. ericae (Perotto et al., 2000), could have interfered with PCR amplification in their 339 

study, leading to the absence of R. ericae sequences from clone libraries.  340 

For the first time, the present study performed Koch’s postulates for the C. varians-R. ericae 341 

association, inoculating axenically-grown liverwort with an isolate of the fungus from the plant. 342 

These experiments confirmed that the fungus is able to form hyphal coils similar to those observed 343 

in field-collected plants, indicating that the loose coil observed in the base of a C. varians rhizoid 344 

cell by Williams et al. (1994) was indeed most probably formed by R. ericae. We cannot, however, 345 

discount the fact that other fungi capable of forming hyphal coils may be present in the tissues of C. 346 

varians. We similarly cannot discount the possibility that the favourable conditions under which the 347 

liverwort was grown in cabinets account for the abundance of coils observed in shoots in the present 348 
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study. Further studies will therefore measure the frequency of coils in tissues of C. varians sampled 349 

directly from maritime and sub-Antarctic sites.  350 

In contrast with the data of Williams et al. (1994), the entry points of R. ericae into C. 351 

varians tissues in the current study were not restricted to rhizoids, and hyphae were found to 352 

colonize the whole plant except for the apical meristem, frequently forming coils within axial cells. 353 

Williams et al. (1994) concluded that the fungal structures observed in C. varians resembled those 354 

described as mycorrhizas or mycothalli. The current study indicates that the latter term is the more 355 

appropriate, owing to the apparent systemic growth of the fungus and the fact that C. varians lacks 356 

flagelliform axes, which might be considered to function in an analogous way to roots (Duckett et 357 

al., 1991). In other liverwort-fungal associations the fungal partner does not grow systemically, but 358 

proliferates in particular regions, such as in the rhizoids of other members of the Cephaloziaceae or 359 

in the inner stem region of members of the Lophoziaceae, Arnelliaceae and Scapaniaceae (Read et 360 

al., 2000). Fungal hyphae within tissues of British Cephaloziella species similarly appear to be 361 

restricted to rhizoid cells and are not present in the walls between the contiguous bases of colonized 362 

rhizoids (Duckett et al., 1991).  363 

Previous work has shown ascomycetous associates of the liverwort genera Cephalozia and 364 

Kurzia to form ericoid mycorrhizas with axenically-grown plants of Calluna, Erica and Vaccinium 365 

spp., which co-occur with the liverworts in the same habitats (Duckett & Read, 1995). Despite the 366 

absence of ericaceous plant species from maritime and continental Antarctica, the current study 367 

similarly found that an isolate of R. ericae from Rothera Point was able to form coils in the root hair 368 

cells of Vaccinium macrocarpon. Although further experiments are required to assess the effects of 369 

Antarctic R. ericae isolates on ericaceous plants, this suggests that such isolates may not have lost 370 

their ability to form functional relationships with higher plant roots.  371 

The formation of hyphal coil-like structures, which maximise the surface area of contact 372 

between symbionts in ericoid mycorrhizas (Smith & Read, 1997), is suggestive of active nutrient 373 

exchange between C. varians and R. ericae. However, whether or not C. varians benefits from the 374 
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well-documented saprotrophic capability of R. ericae, one of the major benefits imparted to plants 375 

forming ericoid mycorrhizas with the fungus (Smith & Read, 1997), is at present an open question. 376 

Despite the fact that certain features of the association are suggestive of a role in the growth and 377 

survival of the liverwort, the functional nature of the C. varians-R. ericae association remains 378 

unclear and should be a focus for future studies. Nevertheless, we can broadly conclude from the 379 

current study that there appears to be a widespread and consistent association between the liverwort 380 

and R. ericae in the maritime and sub-Antarctic, and that R. ericae is at least in part responsible for 381 

the formation of the coils observed in the rhizoids of field-collected C. varians in previous studies. 382 
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Fig. 1 Map showing the locations of the sampling sites (plus symbols). See Table 1 for further details. 496 

 497 

Fig. 2 Bright field micrographs of Cephaloziella varians tissues collected from Rothera Point, Adelaide 498 

Island. (a) Runner hyphae (arrows) forming loose network on the surface of shoot. Bar, 50 m. (b) 499 

Runner hyphae forming strands (black arrow) and entering caulid cells at intervals along the main axis 500 

(white arrows). Bar, 50 m. (c) Dark septate hypha (arrow) colonizing rhizoid cell. Bar, 50 m. (d) 501 

Hyaline septate hyphae colonizing axial cells intracellularly and forming hyphal coils (arrows). Bar, 10 502 

m. 503 

 504 

Fig. 3 Bootstrap consensus NJ tree obtained from the alignment of partial ITS1 (last 137 bp), 5.8S and 505 

partial ITS2 (first 82 bp) sequences of morphotype 1 isolates with sequences from the Hymenoscyphus 506 

ericae aggregate and other alignable taxa. The Kimura two-parameter model was used for pair-wise 507 

distance measurement. Bootstrap replication frequencies above 50% are indicated (1000 replications). 508 

The scale bar indicates two base changes per 100 nucleotide positions. 509 

 510 

Fig. 4 Bootstrap consensus neighbour-joining tree obtained from the LSU sequence alignment of 511 

morphotype 1 isolates with sequences from the Leotiomycetes. Selected Pezizomycete taxa were used to 512 

root the tree. The Kimura two-parameter model was used for pair-wise distance measurement. Bootstrap 513 

replication frequencies above 50% are indicated (1000 replications). The scale bar indicates two base 514 

changes per 100 nucleotide positions. 515 

 516 

Fig. 5 Images of Rhizoscyphus ericae (isolate Cv_RoP_D5) in cells of laboratory-grown Cephaloziella 517 

varians. (a) Bright field micrograph of hyphae (arrows) in rhizoid cell. Bar, 10 m. (b) Fluorescence UV 518 

image of aniline blue-stained hyphal coils in the base of a rhizoid cell. Bar, 10 m. 519 
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Table 1 Descriptions of sampling sites 520 

 521 

Location Site name Site 

abbreviation 

Latitude and 

longitude 

Altitude 

(m a.s.l.) 

Aspect 

South Georgia      

Bird Island Stejneger Peak  StP 54° 00’ S, 38° 04’ W 100 north west 

      

South Orkney Islands      

Coronation Island Mansfield Point  MaP 60° 39’ S, 45° 42’ W 15 north west 

Lynch Island no name1  Lyn 60° 39’ S, 45° 36’ W 10 north west 

Signy Island Berntsen Point  BeP 60° 43’ S, 45° 36’ W 15 north east 

      

South Shetland Islands      

King George Island Potter Cove  PoC 62° 14’ S, 58° 41’ W 5 level 

Livingston Island Byers Peninsula  ByP 62° 40’ S, 61° 08’ W 5 level 

      

western Antarctic Peninsula      

Adelaide Island Rothera Point  RoP 67° 34’ S, 68° 07’ W 5 level 

Alexander Island Moutonnée Valley  MoV 70° 55’ S, 68° 20’ W 60 north 
1north west side of island, close to helicopter landing site 522 

523 
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Table 2 Morphotypes of dematiaceous fungi isolated from Cephaloziella varians and Vaccinium macrocarpon bait seedlings 524 

 Location Isolation frequency (%) No. morphotypes isolated 

  morphotype 1 other morphotypes  

Cephaloziella varians Bird Island 51.3 2.0 4 

 Signy Island 28.5 2.5 2 

 King George Island 26.2 4.0 2 

 Adelaide Island 15.0 0.5 2 

 Alexander Island 41.2 1.0 3 

     

Vaccinium macrocarpon Coronation Island 1.7 0 1 

 Lynch Island 14.8 1.5 3 

 Signy Island 22.2 5.2 3 

 King George Island 11.0 0 1 

 Livingston Island 7.4 3.5 2 

 Adelaide Island 1.3 0 1 

525 
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Table 3 ITS1-5.8S-ITS2 and partial LSU sequences and top taxonomically-identified BLAST matches of morphotype 1 isolates 526 
 527 

Isolate code1 Accession 

no. 

Target 

DNA 

region 

ITS1 

position 

(bp) 

5.8S 

position 

(bp) 

ITS2 

position 

(bp) 

Total 

sequence 

length (bp) 

Top taxonomically-identified 

BLAST match 

Lineage Identity 

(%) 

e-

value 

Cv_PoC_D3 EF658741 

 

ITS 36-196 197-354 355-498 498 AY762620 Rhizoscyphus ericae Helotiaceae,  

Helotiales,  

Leotiomycetidae 

98 0.0 

Cv_PoC_D4 EF658742 ITS 27-187 188-345 346-489 534 AY394907 R. ericae ... 98 0.0 

Cv_RoP_D5 EF658743 ITS 32-192 193-350 351-494 530 AY394907 R. ericae ... 98 0.0 

Cv_RoP_D6 EF658744 ITS 31-191 192-349 350-493 538 AY394907 R. ericae ... 98 0.0 

Vm_PoC_S1 EF658747 ITS 64-224 225-382 383-526 531 AY762620 R. ericae ... 98 0.0 

Vm_BeP_S2 EF658745 ITS 44-204 205-362 363-506 554 AY394907 R. ericae ... 98 0.0 

Vm_Lyn_S10 EF658756 ITS 193-353 354-511 512-6102 610 AY394907 R. ericae ... 98 0.0 

Vm_Lyn_S11 EF658755 ITS 213-373 374-531 532-6102 610 AY394907 R. ericae ... 98 0.0 

Vm_ByP_S13 EF658749 ITS 229-389 390-5452 - 545 AY394907 R. ericae ... 99 0.0 

Vm_PoC_S14 EF658750 ITS 63-223 224-281 382-525 577 AY394907 R. ericae ... 98 0.0 

Vm_Lyn_S15 EF658746 ITS 43-203 204-361 362-4892 489 AY762620 R. ericae ... 99 0.0 

Vm_MaP_S20 EF658751 ITS 131-291 292-449 450-5182 518  AY394907 R. ericae … 99 0.0 

Vm_RoP_S22 EF658754 ITS 51-211 212-369 370-513 565 AY394907 R. ericae ... 98 0.0 

Vm_RoP_S23 EF658753 ITS 56-216 217-374 375-518 555 AY394907 R. ericae ... 98 0.0 

Vm_BeP_S26 EF658752 ITS 58-218 219-376 377-520 554 AY762620 R. ericae ... 98 0.0 

Vm_PoC_S28 EF658748 ITS 56-216 217-374 375-5172 517 AY762620 R. ericae ... 98 0.0 

Cv_StP_G06 EF658761 ITS 1-161 162-319 320-463 467 AF069439 R. ericae ... 99 0.0 

Cv_StP_G07 EF658760 ITS 1-161 162-319 320-463 467 AF069439 R. ericae ... 99 0.0 

Cv_StP_G08 EF658762 ITS 1-161 162-319 320-463 467 AF069439 R. ericae ... 99 0.0 

Cv_StP_G09 EF658759 ITS 1-161 162-319 320-463 467 AF069439 R. ericae ... 99 0.0 

Cv_StP_G10 EF658758 ITS 1-161 162-319 320-463 467 AF069439 R. ericae ... 98 0.0 

Cv_StP_G11 EF658757 ITS 1-161 162-319 320-463 467 AF069439 R. ericae ... 99 0.0 

           

           

Cv_PoC_D3 EF658763 LSU - - - 459 AY394907 R. ericae ... 98 0.0 

Cv_RoP_D5 EF658764 LSU - - - 425 AY394907 R. ericae ... 99 0.0 

Cv_MoV_M1 EF658765 LSU - - - 577 AY394907 R. ericae ... 99 0.0 
1The first two letters in each code indicate the plant species from which the isolate was derived (Cv = Cephaloziella varians, Vm = Vaccinium macrocarpon bait seedling), the 528 
second set of letters indicates the site from which the isolate came (see Table 1 for site abbreviations), and the last set of letters and numbers refer to the specific strain of the 529 
isolate 530 
2partial sequence531 

http://www.ncbi.nih.gov/BLAST/Blast.cgi#18656060#18656060
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Fig. 3  553 
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Fig. 4  564 
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