1	Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus
2	ericae and a leafy liverwort in the maritime and sub-Antarctic
3	
4	R. Upson ^{1, 2} , D.J. Read ¹ and K.K. Newsham ²
5	
6	¹ Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
7	² Biological Sciences Division, British Antarctic Survey, Natural Environment Research Council,
8	High Cross, Madingley Road, Cambridge, CB3 0ET, UK
9	
10	Author for correspondence: KK Newsham
11	E-mail: <u>kne@bas.ac.uk</u>
12	Tel: +44(01223 221400)
13	Fax: +44(01223 362616)
14	

16 Summary

17	•	A recent study identified a fungal isolate from the Antarctic leafy liverwort Cephaloziella
18		varians as the ericoid mycorrhizal associate Rhizoscyphus ericae. However, nothing is known
19		about the wider Antarctic distribution of R. ericae in C. varians, and inoculation experiments
20		confirming the ability of the fungus to form coils in the liverwort are lacking.
21	•	Using direct isolation and baiting with Vaccinium macrocarpon seedlings, we isolated fungi
22		from C. varians sampled from eight sites across a 1,875 km transect through sub- and maritime
23		Antarctica, from Bird Island on South Georgia (54 °S, 38 °W) through to Alexander Island (71
24		°S, 68 °W) on the western Antarctic Peninsula. We also tested the ability of an isolate to form
25		coils in aseptically-grown C. varians.
26	•	Fungi with 98-99% sequence identity to R. ericae internal transcribed spacer region and partial
27		large subunit ribosomal (r)DNA sequences were frequently isolated from C. varians at all sites
28		sampled. The EF4/Fung5 primer set did not amplify small subunit rDNA from three of five <i>R</i> .
29		ericae isolates, probably accounting for the reported absence of the fungus from C. varians in a
30		previous study. R. ericae was found to colonize aseptically-grown C. varians intracellularly,
31		forming hyphal coils.
32	•	This study shows that the association between <i>R. ericae</i> and <i>C. varians</i> is apparently widespread
33		in Antarctica and confirms that <i>R. ericae</i> is at least in part responsible for the formation of the
34		coils observed in rhizoids of field-collected C. varians.
35		
36		
37	Ke	ey words: Cephaloziella varians, dark septate endophyte, ericoid mycorrhiza, Rhizoscyphus
38	eri	<i>cae</i> , liverwort, maritime and sub-Antarctica

40 Introduction

A range of leafy hepatics in the Jungermannopsida consistently form associations with 41 ascomycetous fungi (Read et al., 2000), forming 'mycothalli' (Boullard, 1988). In a study of British 42 43 hepatics, species of the leafy liverwort genus *Cephaloziella* were found to possess fungal 44 associations restricted to rhizoids, with over half of the rhizoid tips colonized (Duckett et al., 1991). 45 Fungal colonization of rhizoids is characterized by dense intracellular growth that appears 46 analogous to ericoid mycorrhizal coils (Selosse, 2005). The functional nature of the relationship 47 between liverworts and their endophytic fungi is not known, but the formation of structures similar 48 to those seen in ericoid mycorrhizal roots suggests an active role in plant survival (Read et al., 49 2000).

50 Cephaloziella varians (Gottsche) Steph. is the most widespread species of liverwort in 51 Antarctica, occurring in the maritime, continental and sub-Antarctic regions (Bednarek-Ochyra et 52 al., 2000). As in British Cephaloziella, hyphae and rudimentary coils of ascomycetous fungal endophytes are present in the rhizoids of this leafy liverwort collected from Botany Bay, Granite 53 harbour (77 °S, 162 °E) and the Bailey Peninsula in the Windmill Islands (66 °S, 110 °E), both in 54 eastern continental Antarctica (Williams et al., 1994). Colonies of isolates from C. varians collected 55 from these locations are slow-growing, waxy and become dark brown to black with age (Williams 56 et al., 1994). Using the ITS1/ITS4 primer set, Chambers et al. (1999) sequenced the internal 57 58 transcribed spacer (ITS) region of an isolate from the Bailey Peninsula and showed it to have a high 59 (99.4%) sequence identity to the type culture of the ericoid mycorrhizal fungus *Hymenoscyphus* 60 ericae, recently renamed as Rhizoscyphus ericae (D.J. Read) W.H. Zhuang & Korf. (Zhang & 61 Zhuang, 2004). In contrast, direct PCR analysis using the EF4/Fung5 primer set, which targeted a 62 region of the small subunit (SSU) ribosomal (r)RNA gene, suggested that fungi bearing strong 63 affinities to R. ericae are absent from C. varians at Rothera Point in the maritime Antarctic 64 (Jumpponen et al., 2003).

65 Given the current uncertainty about the distribution of *R. ericae* in *C. varians* in Antarctica, we addressed the question of whether or not *R. ericae* is consistently isolated from the tissues of the 66 67 liverwort collected from a wide range of locations in the maritime and sub-Antarctic. We also tested 68 whether the EF4/Fung5 primer set might not be appropriate for the amplification of *R. ericae* DNA, 69 possibly owing to the presence of introns in the SSU rDNA (Jumpponen et al., 2003). A re-70 inoculation experiment also determined whether or not R. ericae forms structures similar to those 71 observed in field-collected shoots. Finally, we tested the ability of Antarctic R. ericae to form 72 hyphal coils in the roots of an ericaceous plant species.

73

74 Materials and Methods

75 Field sampling

76

77 Cephaloziella varians was collected during the 2002 and 2005 austral summers from field sites at Bird Island on South Georgia, Signy, Lynch and Coronation Islands in the South Orkneys, King 78 George and Livingston Islands in the South Shetlands, and Adelaide and Alexander Islands on the 79 80 western Antarctic Peninsula (Fig. 1; Table 1). Sites on the South Orkney, South Shetland and Bird Islands were reached by helicopter or small boat from ships. The site on Adelaide Island was 81 82 reached on foot from the nearby British Antarctic Survey Rothera Research Station, and that at Alexander Island was reached by fixed-wing aircraft fitted with skis, also from Rothera. At least 83 five samples of C. varians mat (up to 50×50 mm) were removed from each site with a knife wiped 84 with sterilant (Virkon[®]; Antec International Ltd., Sudbury, UK) between samples and placed in a 85 86 re-sealable polythene bag.

87

88 Treatment of plant material after sampling

90 Plants of C. varians sampled from the South Shetland Islands were initially stored for several days 91 at 4°C in cool boxes, then maintained for 12 wk in growth cabinets set to a 16 h cycle of light (300 μ mol photons m⁻² s⁻¹ at 6°C) and 8 h of darkness (4°C). Those sampled from the South Orkney and 92 93 Adelaide Islands were maintained for 5 to 8 wk under the growth conditions described above and 94 were sprayed with sterile distilled water (dH₂O) to keep tissues moist. Plants sampled from 95 Alexander Island were stored for 4 h in a cool box prior to return to Rothera research station. Those 96 sampled from Bird Island were frozen within several hours of collection at -20° C for 8 wk. 97 All samples except those from Alexander Island were returned to the UK. On arrival, 98 samples from the South Orkney, South Shetland and Adelaide Islands were transported at 4°C to 99 the ANNEX growth room facility at the University of Sheffield. Plants from these locations were 100 transferred to sterile Petri dishes (100 mm × 100 mm; Bibby Sterilin, Stone, UK) and sprayed as 101 necessary with sterile dH₂O to keep tissues moist. Samples from different sites were kept in 102 separate closed dishes. Plants were maintained under the same growth conditions as those described 103 above for between 1 and 16 wk.

104

105 Microscopy analyses of field-collected Cephaloziella varians

106

Unstained or stained *C. varians* shoots, collected 6 wk previously from Rothera Point and
transferred back to the UK in a growth cabinet under the conditions described above, were
examined under bright field illumination (Olympus BX51; Olympus, Southall, UK). For staining,
shoots were cleared in 10% KOH for 24 h, washed in dH₂O, acidified in 10% HCl for 1 h, and
transferred to 0.05% aniline blue (0.25 g aniline blue, 25 ml dH₂O, 475 ml lactic acid) for 1 h and
then to de-staining solution (25 ml dH₂O, 475 ml lactic acid) for 2 h. Shoots were then mounted on
microscope slides in lactoglycerol (14:1:1; lactic acid: glycerol: dH₂O).

115 Isolation of fungi from Cephaloziella varians

117 Fungi were isolated directly from shoots collected from Bird, Signy, King George, Adelaide and 118 Alexander Islands. Samples from Bird Island were defrosted overnight at 4°C prior to isolations. 119 Fungi from Alexander Island were isolated immediately after return to Rothera research station. 120 From each of the five samples of C. varians collected from a given site, c. 25 mg (FW) of the 121 uppermost 10 mm of shoot was placed into 10 ml sterile dH₂O in a Universal bottle. Shoots were 122 serially washed in 20 changes of sterile dH₂O for 5 min per wash on a wrist-action shaker at 7 beats s⁻¹. Shoots were blotted on sterile filter paper, cut into 1-2 mm length segments and plated into 123 124 either 10% modified Melin-Norkrans agar (MMN; acidified to pH 4.5 with 10% HCl) medium or 1% malt extract agar (MEA) medium in 90 mm Petri dishes. Each dish contained five segments of 125 126 shoot, plated equidistantly in the agar medium. Between 12 and 20 dishes of each agar medium 127 were prepared per site. Dishes were incubated in the dark at 18°C and checked daily for 14 d then 128 weekly for 10 wk. The number of fungal colonies present was recorded, and the most common 129 fungal morphotype sub-cultured onto 10% MMN and 1% MEA media and stored in the dark at 18°C. 130

131

132 Isolation of fungi from *Vaccinium macrocarpon* bait seedlings

133

134 Seeds of *V. macrocarpon* were sterilized for 10 min in calcium hypochlorite solution (1:28, w/v) 135 followed by three rinses in sterile dH₂O, and were germinated on 1.5% plant agar medium (Duchefa 136 Biochemie, Haarlem, The Netherlands). Five uncontaminated, two-week-old V. macrocarpon 137 seedlings were each planted into C. varians mat from Coronation, Lynch, Signy, King George, Livingston and Adelaide Islands. The mats were placed into Petri dishes, which were sealed with 138 139 Parafilm and maintained under the same growth conditions as those described above for 8 wk. 140 Five 10 mm root segments were arbitrarily selected from each of the five V. macrocarpon 141 plants growing in C. varians collected from each site. Five of the 25 segments from each site were

142	each placed into 10 ml sterile dH ₂ O, were serially washed as described above, and, after blotting,
143	plated into 10% MMN and 1% MEA media. Between 10 and 15 dishes of each agar medium were
144	prepared, incubated at 18°C and checked as above.
145	
146	Characterization and quantification of fungi
147	
148	Macroscopic and microscopic features of colonies were noted after growth for 20 d in the dark at
149	18°C on 1% MEA medium. Sub-cultures of each were transferred to 5°C in an attempt to induce
150	sporulation (Richard & Fortin, 1973). The type cultures of <i>Rhizoscyphus ericae</i> (Read 100 and 101)
151	were used for comparison with fungal isolates. Isolation frequency was calculated as the number of
152	colonies / the total number of liverwort or root segments plated \times 100%.
153	
154	Molecular characterization of dominant fungal morphotype
155	
155 156	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted
155 156 157	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation,
155 156 157 158	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F
155 156 157 158 159	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the
155 156 157 158 159 160	 DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i>, 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5
155 156 157 158 159 160 161	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 and NL8 (Egger, 1995) were used to amplify a partial 5' section of the LSU, including the D1/D2
155 156 157 158 159 160 161 162	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 and NL8 (Egger, 1995) were used to amplify a partial 5' section of the LSU, including the D1/D2 region, from three of the isolates.
 155 156 157 158 159 160 161 162 163 	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 and NL8 (Egger, 1995) were used to amplify a partial 5' section of the LSU, including the D1/D2 region, from three of the isolates. PCR amplifications were carried out in 34 µl volumes, consisting of 30 µl ReddyMix PCR
 155 156 157 158 159 160 161 162 163 164 	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 and NL8 (Egger, 1995) were used to amplify a partial 5' section of the LSU, including the D1/D2 region, from three of the isolates. PCR amplifications were carried out in 34 µl volumes, consisting of 30 µl ReddyMix PCR mix (Abgene, Epsom, UK), 2 µl template DNA and 1 µl of each primer, on a PTC-225 Peltier
 155 156 157 158 159 160 161 162 163 164 165 	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 and NL8 (Egger, 1995) were used to amplify a partial 5' section of the LSU, including the D1/D2 region, from three of the isolates. PCR amplifications were carried out in 34 μl volumes, consisting of 30 μl ReddyMix PCR mix (Abgene, Epsom, UK), 2 μl template DNA and 1 μl of each primer, on a PTC-225 Peltier thermal cycler (MJ Research Inc., Watertown, MA, USA). Each amplification included a negative
 155 156 157 158 159 160 161 162 163 164 165 166 	DNA extraction and sequencing. Using the method of Cubero <i>et al.</i> (1999), DNA was extracted from 23 isolates of the most frequent fungal morphotype from Bird, Signy, Lynch, Coronation, King George, Livingston, Adelaide and Alexander Islands. The fungal specific primer ITS1F (Gardes & Bruns, 1993) and the universal primer ITS4 (White <i>et al.</i> , 1990) were used to amplify the ITS region (ITS1-5.8S-ITS2) between the SSU and large subunit (LSU) rDNA. The primers NL5 and NL8 (Egger, 1995) were used to amplify a partial 5' section of the LSU, including the D1/D2 region, from three of the isolates. PCR amplifications were carried out in 34 µl volumes, consisting of 30 µl ReddyMix PCR mix (Abgene, Epsom, UK), 2 µl template DNA and 1 µl of each primer, on a PTC-225 Peltier thermal cycler (MJ Research Inc., Watertown, MA, USA). Each amplification included a negative control in which 2 µl of sterile ddH ₂ O was substituted for the DNA template. Ice-cold reaction

168 denaturation at 94°C for 1 min, annealing at 54°C for 1 min and synthesis at 72°C for 70 s,

169 followed by a final extension step of 68°C for 10 min. Detectable PCR products were purified and

170 target rDNA regions sequenced using a MegaBACE 1000 sequencer (Molecular Dynamics,

171 Sunnyvale, CA, USA). The sequencing reactions were repeated for both forward and reverse

- 172 primers.
- 173

174 **Phylogenetic analyses.** Consensus sequences were produced for the ITS and LSU sequences

175 obtained from this study using BioEdit (version 7.0.4.1; Hall, 1999), initially with the ClustalW

176 option (Thompson et al., 1994), and thereafter manually by visual inspection. NCBI BLAST

177 (Altschul et al., 1997) and Fasta searches (Fasta fungi and Fasta env) (Pearson & Lipman, 1988;

178 http://www.ebi.ac.uk/fasta33/nucleotide.html) were carried out for each ITS and LSU consensus

179 sequence. The exact positioning of the ITS1, 5.8S and ITS2 along sequences was determined using

180 paired alignments with BLAST matches and information deposited in GenBank. ITS sequences

181 were then aligned with the *Hymenoscyphus* (\equiv *Rhizoscyphus*) *ericae* aggregate (*sensu* Vrålstad *et*

182 *al.*, 2000) alignment deposited in TreeBASE by Hambleton & Sigler (2005)

183 (http://www.treebase.org/treebase/; study accession no. S1393). In order to align sequences from

the current study with more distantly related taxa in the deposited alignment, the 5' partial SSU

185 sequence and the first c. 23 bp of ITS1 were removed. ITS sequences were further shortened to 318-

186 397 bp by removing the 3' partial LSU sequence and the last *c*. 61 bp of ITS2 to accommodate

187 shorter sequences. Similarly, LSU sequences were shortened to 397 bp to align with those from a

188 broad selection of Leotiomycetous taxa and selected Pezizomycetes. The aligned sequences were

189 then subjected to phylogenetic analysis using the neighbour-joining (NJ) method (Saitou & Nei,

190 1987) in MEGA version 3.1 (Kumar *et al.*, 2004) with the Kimura two-parameter model. Gaps or

191 missing data were excluded from analyses and a uniform rate of mutation was assumed across sites.

192 Robustness of phylogenetic trees was assayed using 1000 NJ bootstrap replications (Felsenstein,

193 1985). Sequences were deposited in GenBank under accession numbers 000000-000000.

195

Comparison of ITS1F/ITS4 and EF4/Fung5 primer sets. Three isolates of the dominant fungal morphotype from *C. varians* tissue and two from *V. macrocarpon* bait seedling roots were used for these analyses. Two *Phoma herbarum* isolates were used for comparison. All seven isolates originated from Rothera Point. DNA extraction from the isolates and PCR amplification were carried out as described above for the primer sets ITS1F/ITS4 and EF4/Fung5 (Smit *et al.*, 1999), except that the PCR cycle parameters used for the latter set were those used by Jumpponen *et al.* (2003). The PCR products were separated on 2% agarose gel.

203

204 Synthesis experiments

205

206 Inoculation of *Cephaloziella varians*. Axenic gametophytes of *C. varians* were obtained from 207 spores. Sporophytes were carefully removed from laboratory-grown C. varians using sterile fine 208 forceps under a sterile flow hood. Several sporophytes were attached to the lid of a 90 mm Petri 209 dish using sterile lanolin so that the sporophyte hung c. 5 mm above the surface of 1.5% plant agar 210 medium. Dishes were sealed with Parafilm and maintained under the same growth conditions as 211 those described above. A fresh lid was placed on the dish under a sterile flow hood when spores 212 were seen on the agar medium surface. Ten gametophytes were each aseptically transferred to Petri 213 dishes containing 1.5% plant agar medium when they reached c. 1 mm diameter. An 8 mm diameter 214 1.2% water agar medium plug, inoculated 14 d previously with an isolate of the most frequent 215 fungal morphotype from Rothera Point, was positioned 20 mm from each of five C. varians 216 gametophytes. An uninoculated 1.2% water agar plug was placed 20 mm from the each of the 217 remaining gametophytes. Petri dishes were sealed with Parafilm, wrapped with aluminium foil and 218 a hole was made in the foil above the gametophyte in order to admit light. Gametophytes were 219 grown under the same conditions as those described above.

Shoots were harvested 8 wk after hyphae had reached the gametophytes. They were viewed unstained or stained with aniline blue under bright field or UV fluorescence.

222

221

Inoculation of Vaccinium macrocarpon. Polycarbonate Magenta® growth vessels (Sigma-Aldrich, 223 224 St Louis, MO, USA), fitted with 0.22 μ m filter lids, were filled to a depth of 30 mm with 180 ml of 20% Rorison's nutrient solution (pH 5.4, with 0.5 g L^{-1} activated charcoal and 15 g L^{-1} agar). 225 Vessels and growth medium were sterilised at 121°C for 15 min and cooled to room temperature. 226 Five axenically-grown V. macrocarpon seedlings, germinated as described above, were 227 transferred to each of two growth vessels, and were inoculated with 1 ml macerate, consisting of 228 either uninoculated or inoculated pieces of 1.2% water agar $(20 \times 10 \times 6 \text{ mm})$ in 15 ml sterile 229 dH₂O. Inoculated water agar had been cut under sterile conditions from the growing margin of the 230 231 same isolate from Rothera Point that was used to inoculate C. varians, which had been grown for 2 232 wk at 18°C in the dark. The growth vessels were sealed with Parafilm, transferred to the growth 233 room and maintained under the same growth conditions as those described above. Plants were 234 grown for 12 wk prior to harvest. Upon harvest, V. macrocarpon roots were rinsed free of growth medium with sterile dH₂O 235 236 and were qualitatively assessed for the presence of ericoid coils in cortical cells. Roots from each 237 plant were observed unstained or stained with aniline blue under bright field and UV fluorescence,

as described above. For staining, *V. macrocarpon* roots were dipped in 10% HCl, transferred to

- 239 0.05% aniline blue for 10 min and rinsed in sterile dH_2O .
- 240
- 241 **Results**

242 Microscopy analyses of field-collected *Cephaloziella varians*

243

A network of dark septate 'runner' hyphae (c. 2 μ m diameter) covered the caulid surfaces of C.

245 *varians* sampled from Rothera Point (Fig. 2a, b). Hyphae commonly entered caulid cells (Fig. 2b)

246	and colonised rhizoids (Fig. 2c), both in the apical and distal regions of the liverwort. Dark septate
247	hyphae on caulid surfaces formed a continuum with intracellular pigmented, hyaline and aniline
248	blue-staining septate hyphae, which were frequently observed to proliferate within cells, forming
249	hyphal coils (Fig. 2d). The basal regions of rhizoids were also filled with hyphal coils (not shown).
250	Pigmented, hyaline and aniline blue-staining septate hyphae were apparently able to pass from cell
251	to cell by directly penetrating the cell wall, with no evidence of cell necrosis.
252	
253	Characterization and quantification of fungi
254	
255	A single morphotype, morphotype 1, was the most frequently-isolated fungus from C. varians
256	tissue collected from Bird, Signy, King George, Adelaide and Alexander Islands (Table 2). Between
257	one and three other morphotypes of dematiaceous fungi were isolated from C. varians from each of
258	these locations (Table 2). Colonies of morphotype 1 were slow growing, with a mean radial
259	extension rate of 3.0 (\pm 0.13) mm wk ⁻¹ , were often waxy and lacked dense aerial hyphae, except for
260	in the centre of the colony, where ropes were formed. After 20 d, colonies of the morphotype were
261	dark greenish grey from above with a white margin and were dark brown with a cream margin from
262	below. They became dark brown with age. Sporulation structures were not observed in any cultures
263	of morphotype 1, including those incubated at 5°C.

Colonies of morphotype 1 also dominated the fungal isolates from roots of *V. macrocarpon* bait seedlings grown in *C. varians* mats from Coronation, Lynch, Signy, King George, Livingston and Adelaide Islands (Table 2). It was the only morphotype isolated from *V. macrocarpon* roots grown in mats from Coronation, King George and Adelaide Islands. One or two other morphotypes of fungi were isolated from each of the other locations (Table 2). Fungi were not isolated from the roots of uninoculated *V. macrocarpon* bait seedlings.

270

271 Molecular characterization of dominant fungal morphotype

273	Phylogenetic analyses. Isolates of morphotype 1 produced single amplification products of c. 600
274	bp for both ITS and LSU sequences. Negative controls produced no amplification products.
275	Consensus sequences of c. 425-610 bp were produced. Two isolates, Vm_ByP_S13 and
276	Vm_MaP_S20 (see footnote to Table 3 for an explanation of isolate codes), were missing all or a
277	large proportion of the ITS2 region and were therefore removed from all further analyses. These
278	sequences matched R. ericae (AY394907) with 99% identity over their entire lengths. The sequence
279	identity between all other morphotype 1 isolates was 97-100% over the entire ITS1-5.8S-ITS2
280	region. All morphotype 1 sequences retrieved R. ericae as the top taxonomically-identified BLAST
281	match, showing 98-99% sequence identity over the entire ITS1-5.8S-ITS2 region (Table 3).
282	Morphotype 1 isolates and the isolate from C. varians on the Bailey Peninsula in eastern Antarctica
283	(AF069439) had 97-99% sequence identity over the ITS1-5.8S-ITS2 region. NJ analysis of
284	morphotype 1 partial ITS sequences showed them to group with 99% bootstrap support within the
285	H. ericae aggregate and with 81% bootstrap support within the R. ericae clade, alongside sequences
286	obtained for the isolate from the Bailey Peninsula, and others from vascular plant species in
287	Australia, Norway, Canada, the USA and the UK (Fig. 3).
288	The sequence identity between morphotype 1 isolates Cv_PoC_D3, Cv_RoP_D5 and
289	Cv_MoV_M1 was 97-99% over the partial LSU region. BLAST searches retrieved R. ericae
290	sequences as the best match for the three LSU sequences, showing 98-99% identity (Table 3). NJ
291	analysis clustered the partial LSU sequences together in a 73% bootstrap-supported monophyletic
292	group with R. ericae sequences (Fig. 4).
293	
294	Comparison of ITS1F/ITS4 and EF4/Fung5 primer sets. All seven isolates produced
295	amplification products of c. 600 bp for the ITS1F/ITS4 primer combination, whereas only the

- 296 morphotype 1 isolates Vm_RoP_23 and Vm_RoP_22 and the two *Phoma herbarum* isolates
- 297 produced amplification products with the EF4/Fung5 primer set (not shown). The amplification

products from the former two isolates, the first of which produced a very faint band, were *c*. 1000
bp and those from the latter two were *c*. 600 bp in length (not shown). The morphotype 1 isolates
Cv_RoP_D6, Cv_RoP_D5 and Cv_RoP_R07 failed to amplify with the EF4/Fung5 primer set.

301

302 Synthesis experiments

303

304 Inoculation of Cephaloziella varians. The patterns of colonization observed in the inoculated 305 plants of C. varians were similar to those seen in field-collected plants. The morphotype 1 isolate 306 Cv RoP D5 was found to colonize and form penetration structures on rhizoid and axial cells of C. 307 varians shoots. As in field-collected shoots, R. ericae hyphae grew within rhizoid (Fig. 5a) and 308 axial cells. Hyphae ramified throughout the entire shoot, forming a loose network of runner hyphae 309 over axial surfaces, and frequently formed intracellular hyaline septate hyphal coils (Fig. 5b). In 310 some rhizoids, hyphae branched into fan-like structures at the base of the cell, with hyphae directly 311 penetrating the cell wall and entering neighbouring cells. There was no fungal colonization of 312 uninoculated shoots.

313

Inoculation of *Vaccinium macrocarpon*. Well-defined intracellular hyphal coils frequently
developed in root epidermal cells of *V. macrocarpon* seedlings that had been inoculated with
Cv_RoP_D5 (not shown). There was no fungal colonization of uninoculated control plants.

317

318 **Discussion**

The current study has shown *R. ericae* to be present in *C. varians* from eight locations in the Antarctic, spanning a 1,875 km southward transect from Bird Island on South Georgia through to Moutonnée Valley on Alexander Island, at the southern limit of the maritime Antarctic. Direct isolations showed the fungus to grow from as many as half of the segments of liverwort shoot plated into agar media, with relatively few colonies of other morphotypes isolated. The study has

324 thus significantly extended the known range of the *Cephaloziella varians-Rhizoscyphus ericae*

325 association in Antarctica, and, along with the data of Chambers *et al.* (1999), strongly suggests that 326 the association is a consistent relationship in Antarctic plant communities. Other than the widely-327 documented occurrence of lichens in the Antarctic (e.g. Øvstedal & Smith, 2001), we are unaware 328 of any other reports in the literature of consistent associations between autotrophs and fungi on the 329 continent.

330 The data reported here are at variance with those of Jumpponen et al. (2003), who found no 331 evidence that R. ericae was present at Rothera Point, a location from which several isolates of the 332 fungus were obtained in the current study. It is apparent from the data shown here that the 333 EF4/Fung5 primer set used by Jumpponen et al. (2003) in their direct PCR study is not suitable for 334 the amplification of *R. ericae* DNA: using this primer set, SSU region DNA from three of five *R*. ericae isolates from Rothera Point failed to amplify, and the c. 1000 bp product size of the other 335 336 two isolates, compared with the c. 600 bp products of two *Phoma herbarum* isolates, implied the presence of a c. 400 bp insertion in the SSU region of the R. ericae DNA. As suggested by 337 338 Jumpponen et al. (2003), it is possible that the presence of introns, which are frequent in the SSU rDNA of R. ericae (Perotto et al., 2000), could have interfered with PCR amplification in their 339 study, leading to the absence of *R. ericae* sequences from clone libraries. 340

341 For the first time, the present study performed Koch's postulates for the C. varians-R. ericae association, inoculating axenically-grown liverwort with an isolate of the fungus from the plant. 342 These experiments confirmed that the fungus is able to form hyphal coils similar to those observed 343 344 in field-collected plants, indicating that the loose coil observed in the base of a C. varians rhizoid 345 cell by Williams et al. (1994) was indeed most probably formed by R. ericae. We cannot, however, 346 discount the fact that other fungi capable of forming hyphal coils may be present in the tissues of C. 347 varians. We similarly cannot discount the possibility that the favourable conditions under which the liverwort was grown in cabinets account for the abundance of coils observed in shoots in the present 348

study. Further studies will therefore measure the frequency of coils in tissues of *C. varians* sampled
directly from maritime and sub-Antarctic sites.

351 In contrast with the data of Williams et al. (1994), the entry points of R. ericae into C. 352 varians tissues in the current study were not restricted to rhizoids, and hyphae were found to 353 colonize the whole plant except for the apical meristem, frequently forming coils within axial cells. 354 Williams et al. (1994) concluded that the fungal structures observed in C. varians resembled those 355 described as mycorrhizas or mycothalli. The current study indicates that the latter term is the more 356 appropriate, owing to the apparent systemic growth of the fungus and the fact that C. varians lacks 357 flagelliform axes, which might be considered to function in an analogous way to roots (Duckett et 358 al., 1991). In other liverwort-fungal associations the fungal partner does not grow systemically, but 359 proliferates in particular regions, such as in the rhizoids of other members of the Cephaloziaceae or 360 in the inner stem region of members of the Lophoziaceae, Arnelliaceae and Scapaniaceae (Read et al., 2000). Fungal hyphae within tissues of British Cephaloziella species similarly appear to be 361 362 restricted to rhizoid cells and are not present in the walls between the contiguous bases of colonized 363 rhizoids (Duckett et al., 1991).

364 Previous work has shown ascomycetous associates of the liverwort genera Cephalozia and 365 Kurzia to form ericoid mycorrhizas with axenically-grown plants of Calluna, Erica and Vaccinium 366 spp., which co-occur with the liverworts in the same habitats (Duckett & Read, 1995). Despite the absence of ericaceous plant species from maritime and continental Antarctica, the current study 367 368 similarly found that an isolate of R. ericae from Rothera Point was able to form coils in the root hair 369 cells of Vaccinium macrocarpon. Although further experiments are required to assess the effects of 370 Antarctic *R. ericae* isolates on ericaceous plants, this suggests that such isolates may not have lost 371 their ability to form functional relationships with higher plant roots.

The formation of hyphal coil-like structures, which maximise the surface area of contact between symbionts in ericoid mycorrhizas (Smith & Read, 1997), is suggestive of active nutrient exchange between *C. varians* and *R. ericae*. However, whether or not *C. varians* benefits from the

375 well-documented saprotrophic capability of *R. ericae*, one of the major benefits imparted to plants forming ericoid mycorrhizas with the fungus (Smith & Read, 1997), is at present an open question. 376 377 Despite the fact that certain features of the association are suggestive of a role in the growth and 378 survival of the liverwort, the functional nature of the C. varians-R. ericae association remains 379 unclear and should be a focus for future studies. Nevertheless, we can broadly conclude from the 380 current study that there appears to be a widespread and consistent association between the liverwort 381 and *R. ericae* in the maritime and sub-Antarctic, and that *R. ericae* is at least in part responsible for 382 the formation of the coils observed in the rhizoids of field-collected C. varians in previous studies.

383

384 Acknowledgements

385 Thanks are due to Blair Lawley, David Pearce, Paul Bridge, Melody Clark and Elaine Fitzcharles 386 for their guidance with molecular work. For support prior to and during fieldwork, we would like to 387 thank Ron Lewis-Smith, Roger Worland, Mairi Nicolson, Kat Snell, Richard Burt, Rod Strachan, Sarah Lurcock, Jane Tanton and Pete Convey. The latter kindly collected samples from Bird Island. 388 389 We would also like to thank Alan Meredith, the BAS Air Unit and Logistics Group and the crews of 390 the RRS Ernest Shackleton and HMS Endurance for transportation to and from sampling sites. 391 Thanks are also due to Irene Johnson and Peter Fretwell for technical assistance and to three 392 anonymous referees for helpful comments. This research was supported by the Natural 393 Environment Research Council through the Antarctic Funding Initiative (award no. 394 NER/G/S/2000/00318) and by BAS CASE sponsorship.

395

396	References
397	Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997.
398	Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
399	Acids Research 25: 3389-3402.
400	
401	Bednarek-Ochyra H, Vana J, Ochyra JVR, Smith RIL. 2000. The liverwort flora of Antarctica.
402	Cracow, Poland: Polish Academy of Sciences, Institute of Botany, 236 pp.
403	
404	Boullard B. 1988. Observations on the coevolution of fungi with hepatics. In: Pyrozynski KA,
405	Hawksworth DL, eds. Coevolution of fungi with plants and animals. London, UK: Academic Press,
406	107-124.
407	
408	Chambers SM, Williams PG, Seppelt RD, Cairney JWG. 1999. Molecular identification of
409	Hymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and
410	Antarctica. Mycological Research 103: 286-288.
411	
412	Cubero OF, Crespo A, Fatehi J, Bridge PD. 1999. DNA extraction and PCR amplification
413	method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Systematics and
414	<i>Evolution</i> 216 : 243-249.
415	
416	Duckett JG, Renzaglia KS, Pell K. 1991. A light and electron microscope study of rhizoid
417	ascomycete associations and flagelliform axes in British hepatics with observations on the effects of
418	the fungi on host morphology. New Phytologist 118: 233-257.
419	

420	Duckett JG, Read DJ. 1995. Ericoid mycorrhizas and rhizoid-ascomycete associations in
421	liverworts share the same mycobiont - isolation of the partners and resynthesis of the associations in
422	vitro. New Phytologist 129: 439-477.
423	
424	Egger KN. 1995. Molecular analysis of ectomycorrhizal fungal communities. Canadian Journal of
425	Botany 73: 1415-1422.
426	
427	Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution
428	39 : 783-791.
429	
430	Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for Basidiomycetes -
431	application to the identification of mycorrhizae and rusts. <i>Molecular Ecology</i> 2 : 113-118.
432	
433	Hall TA. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program
434	for Windows 95/98/NT. Bioedit (Biological Sequence Alignment Editor). Nucleic Acids Symposium
435	Series 41: 95-98
436	
437	Hambleton S, Sigler L. 2005. Meliniomyces, a new anamorph genus for root-associated fungi with
438	phylogenetic affinities to Rhizoscyphus ericae (Hymenoscyphus ericae), Leotiomycetes. Studies in
439	<i>Mycology</i> 53 : 1-27.
440	
441	Jumpponen A, Newsham KK, Neises DJ. 2003. Filamentous ascomycetes inhabiting the rhizoid
442	environment of the liverwort Cephaloziella varians in Antarctica are assessed by direct PCR and
443	cloning. <i>Mycologia</i> 95 : 457-466.
444	

445	Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary
446	Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163.
447	
448	Pearson WR, Lipman DJ. 1988. Improved tools for biological sequence comparison. Proceedings
449	of the National Academy of Sciences of the USA 85: 2444-2448.
450	
451	Perotto S, Nepote-Fus P, Saletta L, Bandi C, Young JPW. 2000. A diverse population of introns
452	in the nuclear ribosomal genes of ericoid mycorrhizal fungi includes elements with sequence
453	similarity to endonuclease-coding genes. Molecular Biology and Evolution 17: 44-59.
454	
455	Read DJ, Duckett JG, Francis R, Ligrone R, Russell A. 2000. Symbiotic fungal associations in
456	'lower' land plants. Philosophical Transactions of the Royal Society of London, B 355: 815-831.
457	
458	Richard C, Fortin JA. 1973. The identification of Mycelium radicis atrovirens. Canadian Journal
459	of Botany 51 : 2247-2248.
460	
461	Saitou N, Nei M. 1987. The neighbour-joining method: a new method for reconstructing
462	phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
463	
464	Selosse M-A. 2005. Are liverworts imitating mycorrhizas? New Phytologist 165: 345-349.
465	
466	Smit E, Leeflang P, Glandorf B, Dirk J, van Elsas JD, Wernars K. 1999. Analysis of fungal
467	diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S
468	rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology 65:
469	2614-2621.

471	Smith SE, Read DJ. 1997. Mycorrhizal symbiosis. 2 nd ed. London, UK: Academic Press.
472	
473	Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving sensitivity of
474	progressive multiple sequence alignment through sequence weighting, position-specific gap
475	penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
476	
477	Vrålstad T, Fossheim T, Schumacher T. 2000. Piceirhiza bicolorata - the ectomycorrhizal
478	expression of the Hymenoscyphus ericae aggregate? New Phytologist 145: 549-563.
479	
480	White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal
481	ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ, eds.
482	PCR protocols: a guide to methods and applications. San Diego: Academic Press, 315-322.
483	
484	Williams PG, Roser DJ, Seppelt RD. 1994. Mycorrhizas of hepatics in continental Antarctica.
485	Mycological Research 98: 34-36.
486	
487	Zhang YH, Zhuang WY, 2004. Phylogenetic relationships of some members in the genus
488	Hymenoscyphus (Ascomycetes, Helotiales). Nova Hedwigia 78: 475-484.
489	
490	Øvstedal DO, Smith RIL, 2001. Lichens of Antarctica and South Georgia: a guide to their
491	identification and ecology. Studies in Polar Research. Cambridge, UK: Cambridge University Press.
492	
493	
494	
495	

496 **Fig. 1** Map showing the locations of the sampling sites (plus symbols). See Table 1 for further details.

497

7 <i>71</i>	
498	Fig. 2 Bright field micrographs of Cephaloziella varians tissues collected from Rothera Point, Adelaide
499	Island. (a) Runner hyphae (arrows) forming loose network on the surface of shoot. Bar, 50 μ m. (b)
500	Runner hyphae forming strands (black arrow) and entering caulid cells at intervals along the main axis
501	(white arrows). Bar, 50 μ m. (c) Dark septate hypha (arrow) colonizing rhizoid cell. Bar, 50 μ m. (d)
502	Hyaline septate hyphae colonizing axial cells intracellularly and forming hyphal coils (arrows). Bar, 10
503	μ m.
504	
505	Fig. 3 Bootstrap consensus NJ tree obtained from the alignment of partial ITS1 (last 137 bp), 5.8S and
506	partial ITS2 (first 82 bp) sequences of morphotype 1 isolates with sequences from the Hymenoscyphus
507	ericae aggregate and other alignable taxa. The Kimura two-parameter model was used for pair-wise
508	distance measurement. Bootstrap replication frequencies above 50% are indicated (1000 replications).
509	The scale bar indicates two base changes per 100 nucleotide positions.
510	
511	Fig. 4 Bootstrap consensus neighbour-joining tree obtained from the LSU sequence alignment of
512	morphotype 1 isolates with sequences from the Leotiomycetes. Selected Pezizomycete taxa were used to
513	root the tree. The Kimura two-parameter model was used for pair-wise distance measurement. Bootstrap
514	replication frequencies above 50% are indicated (1000 replications). The scale bar indicates two base
515	changes per 100 nucleotide positions.
516	

517 Fig. 5 Images of *Rhizoscyphus ericae* (isolate Cv_RoP_D5) in cells of laboratory-grown *Cephaloziella* 518 *varians*. (a) Bright field micrograph of hyphae (arrows) in rhizoid cell. Bar, 10 μ m. (b) Fluorescence UV 519 image of aniline blue-stained hyphal coils in the base of a rhizoid cell. Bar, 10 μ m.

Table 1 Descriptions of sampling sites

Location	Site name	Site abbreviation	Latitude and longitude	Altitude (m a.s.l.)	Aspect
South Georgia					
Bird Island	Stejneger Peak	StP	54° 00' S, 38° 04' W	100	north west
South Orkney Islands					
Coronation Island	Mansfield Point	MaP	60° 39' S, 45° 42' W	15	north west
Lynch Island	no name ¹	Lyn	60° 39' S, 45° 36' W	10	north west
Signy Island	Berntsen Point	BeP	60° 43' S, 45° 36' W	15	north east
South Shetland Islands					
King George Island	Potter Cove	PoC	62° 14' S, 58° 41' W	5	level
Livingston Island	Byers Peninsula	ByP	62° 40' S, 61° 08' W	5	level
western Antarctic Peninsula					
Adelaide Island	Rothera Point	RoP	67° 34' S, 68° 07' W	5	level
Alexander Island	Moutonnée Valley	MoV	70° 55' S, 68° 20' W	60	north

¹north west side of island, close to helicopter landing site

	Location	Isolation frequency (%)		No. morphotypes isolated	
		morphotype 1	other morphotypes	_	
Cephaloziella varians	Bird Island	51.3	2.0	4	
	Signy Island	28.5	2.5	2	
	King George Island	26.2	4.0	2	
	Adelaide Island	15.0	0.5	2	
	Alexander Island	41.2	1.0	3	
Vaccinium macrocarpon	Coronation Island	1.7	0	1	
	Lynch Island	14.8	1.5	3	
	Signy Island	22.2	5.2	3	
	King George Island	11.0	0	1	
	Livingston Island	7.4	3.5	2	
	Adelaide Island	1.3	0	1	

Table 2 Morphotypes of dematiaceous fungi isolated from *Cephaloziella varians* and *Vaccinium macrocarpon* bait seedlings

 Table 3 ITS1-5.8S-ITS2 and partial LSU sequences and top taxonomically-identified BLAST matches of morphotype 1 isolates

Isolate code ¹	Accession no.	Target DNA	ITS1 position	5.8S position	ITS2 position	Total sequence	Top taxonomically-identified BLAST match	Lineage	Identity (%)	e- value
0.000	FF(50741	region	(bp)	(bp)	(bp)	length (bp)		TT 1 /	00	0.0
Cv_PoC_D3	EF658/41	118	36-196	197-354	355-498	498	AY 762620 Rhizoscyphus ericae	Helotiaceae,	98	0.0
								Helotiales,		
C D.C D4	FF(50740	ITC	27 107	100 245	246 490	524	AX204007 D	Leotiomycetidae	00	0.0
Cv_PoC_D4	EF038/42		27-187	188-343	340-489	534	A Y 594907 R. ericae		98	0.0
Cv_RoP_D5	EF658/43	115	32-192	193-350	351-494	530	A Y 394907 R. ericae		98	0.0
CV_ROP_D6	EF658/44	115	31-191	192-349	350-493	538	AY 394907 <i>R. ericae</i>		98	0.0
Vm_PoC_SI	EF658/4/	115	64-224	225-382	383-526	531	AY /62620 <i>R. ericae</i>		98	0.0
Vm_BeP_S2	EF658/45	118	44-204	205-362	363-506	554	AY 394907 R. ericae		98	0.0
Vm_Lyn_S10	EF658756	ITS	193-353	354-511	512-610 ²	610	AY 394907 R. ericae		98	0.0
Vm_Lyn_SII	EF658755	ITS	213-373	374-531	532-6102	610	AY394907 R. ericae		98	0.0
Vm_ByP_S13	EF658749	ITS	229-389	390-545 ²	-	545	AY394907 R. ericae		99	0.0
Vm_PoC_S14	EF658750	ITS	63-223	224-281	382-525	577	AY394907 R. ericae		98	0.0
Vm_Lyn_S15	EF658746	ITS	43-203	204-361	$362-489^2$	489	AY762620 R. ericae		99	0.0
Vm_MaP_S20	EF658751	ITS	131-291	292-449	$450-518^2$	518	AY394907 R. ericae		99	0.0
Vm_RoP_S22	EF658754	ITS	51-211	212-369	370-513	565	AY394907 R. ericae		98	0.0
Vm_RoP_S23	EF658753	ITS	56-216	217-374	375-518	555	AY394907 R. ericae		98	0.0
Vm_BeP_S26	EF658752	ITS	58-218	219-376	377-520	554	AY762620 R. ericae		98	0.0
Vm PoC S28	EF658748	ITS	56-216	217-374	$375-517^2$	517	AY762620 R. ericae		98	0.0
Cv StP G06	EF658761	ITS	1-161	162-319	320-463	467	AF069439 R. ericae		99	0.0
Cv StP G07	EF658760	ITS	1-161	162-319	320-463	467	AF069439 R. ericae		99	0.0
Cv_StP_G08	EF658762	ITS	1-161	162-319	320-463	467	AF069439 R. ericae		99	0.0
Cv_StP_G09	EF658759	ITS	1-161	162-319	320-463	467	AF069439 R. ericae		99	0.0
Cv_StP_G10	EF658758	ITS	1-161	162-319	320-463	467	AF069439 R. ericae		98	0.0
Cv StP G11	EF658757	ITS	1-161	162-319	320-463	467	AF069439 R. ericae		99	0.0
										- • •
Cv PoC D3	EF658763	LSU	-	-	-	459	AY394907 R. ericae		98	0.0
Cv_RoP_D5	EF658764	LSU	-	_	_	425	AY394907 R. ericae		99	0.0
Cv MoV M1	EF658765	LSU	-	_	_	577	AY394907 <i>R. ericae</i>		99	0.0

²partial sequence

isolate

second set of letters indicates the site from which the isolate came (see Table 1 for site abbreviations), and the last set of letters and numbers refer to the specific strain of the

532 | **Fig. 1**

- 545 546 547

549 Fig. 2

553 Fig. 3

Rhizoscyphus ericae clade

Meliniomyces vraolstadiae clade

Cadophora finlandica clade

Meliniomyces bicolor clade

Meliniomyces variabilis clade

- - -
- **Fig. 4**

- - -

Fig. 5

