43 research outputs found

    Variability of protein level and phosphorylation status caused by biopsy protocol design in human skeletal muscle analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bergström needle biopsy is widely used to sample skeletal muscle in order to study cell signaling directly in human tissue. Consequences of the biopsy protocol design on muscle protein quantity and quality remain unclear. The aim of the present study was to assess the impact of different events surrounding biopsy protocol on the stability of the Western blot signal of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, glycogen synthase kinase-3ÎČ (GSK-3ÎČ), muscle RING finger protein 1 (MuRF1) and p70 S6 kinase (p70 S6K). Six healthy subjects underwent four biopsies of the <it>vastus lateralis</it>, distributed into two distinct visits spaced by 48 hrs. At visit 1, a basal biopsy in the right leg was performed in the morning (R1) followed by a second in the left leg in the afternoon (AF). At visit 2, a second basal biopsy (R2) was collected from the right leg. Low intensity mobilization (3 × 20 right leg extensions) was performed and a final biopsy (Mob) was collected using the same incision site as R2.</p> <p>Results</p> <p>Akt and p70 S6K phosphorylation levels were increased by 83% when AF biopsy was compared to R1. Mob condition induced important phosphorylation of p70 S6K when compared to R2. Comparison of R1 and R2 biopsies revealed a relative stability of the signal for both total and phosphorylated proteins.</p> <p>Conclusions</p> <p>This study highlights the importance to standardize muscle biopsy protocols in order to minimize the method-induced variation when analyzing Western blot signals.</p

    Satellite Cells Senescence in Limb Muscle of Severe Patients with COPD

    Get PDF
    Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada Rationale: The maintenance of peripheral muscle mass may be compromised in chronic obstructive pulmonary disease (COPD) due to premature cellular senescence and exhaustion of the regenerative potential of the muscles. Methods: Vastus lateralis biopsies were obtained from patients with COPD (n = 16) and healthy subjects (n = 7). Satellite cell number and the proportion of central nuclei, as a marker of muscle regenerative events, were assessed on cryosections. Telomere lengths, used as a marker of cellular senescence, were determined using Southern blot analyses. Results: Central nuclei proportion was significantly higher in patients with COPD with a preserved muscle mass compared to controls and patients with COPD with muscle atrophy (p,0.001). In COPD, maximal telomere length was significantly decreased compared to controls (p,0.05). Similarly, minimal telomere length was significantly reduced in GOLD III–IV patients with muscle atrophy compared to controls (p,0.005). Minimal, mean and maximum telomere lengths correlated with mid-thigh muscle cross-sectional area (MTCSA) (R = 0.523, p = 0.005; R = 0.435, p = 0.019 and R = 0.491, p = 0.009, respectively). Conclusions: Evidence of increased regenerative events was seen in GOLD III–IV patients with preserved muscle mass. Shortening of telomeres in GOLD III–IV patients with muscle atrophy is consistent with an increased number of senescen

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article

    Proteolysis, the ubiquitin-proteasome system, and renal diseases

    No full text

    Enhancing the Benefits of Pulmonary Rehabilitation

    No full text

    Study of the Relation between Hypoxia and Muscle Atrophy

    No full text
    Background : Skeletal muscle atrophy is an important feature of chronic obstructive pulmonary disease (COPD) and it is recognized to have considerable clinical impacts. Unfortunately, factors contributing to muscle wasting in COPD are poorly understood. Hypoxemia is typical in COPD and several evidences link hypoxic conditions and protein breakdown. We propose that hypoxia participate to muscle atrophy by increasing Ubiquitin-Proteasome (UP) system activity and by decreasing the activity of IGF/PI3K/Akt synthesis pathway. Methods: To test this hypothesis, L6 muscle myotubes were either exposed to hypoxia (1% O2) or normoxia (21% O2). Results: After 24 hours of hypoxic exposure, we found a significant rise in the chymotrypsin and caspase-like 20S proteasome activities. Proteolysis was confirmed by an accumulation of a 14 kDa actin fragment during hypoxia. An elevation of Atrogin-1 mRNA expression was also observed in similar conditions. A decline in Akt phosphorylation was noticed in hypoxia. These changes were attenuated by insulin treatment. Conclusion: Proteolysis is accentuated in myotubes exposed to hypoxia and the UP system appears to be involved. In addition, protein synthesis seems to be affected as a lower Akt activity was observed. However, the IGF/PI3K/Akt pathway can still be stimulated by a suitable signal suggesting that therapies targeting this pathway are conceivable

    Telomere length.

    No full text
    <p><b>A</b>) Minimal, <b>B</b>) Mean and <b>C</b>) Maximal telomere restriction fragment length of the <i>vastus lateralis</i> plotted in healthy subjects (n = 7), patients with COPD and MTCSA >70 cm<sup>2</sup>) (n = 9) and patients with COPD and MTCSA <70 cm<sup>2</sup> (n = 7). The solid horizontal line represents the mean value for the group. Distinct letter represents a statistically significant difference (ANCOVA; p<0.05).</p
    corecore