59,160 research outputs found

    Continuity of the spectra for families of magnetic operators on Z^d

    Full text link
    For families of magnetic self-adjoint operators on Zd{\mathbb Z}^d whose symbols and magnetic fields depend continuously on a parameter ϵ\epsilon, it is shown that the main spectral properties of these operators also vary continuously with respect to ϵ\epsilon. The proof is based on an algebraic setting involving twisted crossed product C*-algebras.Comment: 13 page

    Effect of Night Blinds on Open Integral Display Cabinets

    Get PDF
    The impact of night blinds on the product temperature performance and electrical energy consumption of an integral open multi-deck cabinet is investigated in this paper. The cabinet was tested at various environmental conditions to establish the impact of ambient temperature on the effectiveness of the blind in reducing the energy consumption of the cabinet during night-time operation. The cabinet was tested over a range of temperatures between 20 °C and 35 °C at a constant moisture content. The results indicate that the use of night blinds could produce energy savings of between 10% and 22% calculated on the basis of a 24 hour period of operation with the blind lowered for 12 hours out of the 24 hours. These energy savings lead to pay-back periods of between 2 and 4 years. The savings reduced with increasing ambient temperature due to the increase in the impact of infiltration and conduction across the blind at higher temperatures

    A spectral scheme for Kohn-Sham density functional theory of clusters

    Full text link
    Starting from the observation that one of the most successful methods for solving the Kohn-Sham equations for periodic systems -- the plane-wave method -- is a spectral method based on eigenfunction expansion, we formulate a spectral method designed towards solving the Kohn-Sham equations for clusters. This allows for efficient calculation of the electronic structure of clusters (and molecules) with high accuracy and systematic convergence properties without the need for any artificial periodicity. The basis functions in this method form a complete orthonormal set and are expressible in terms of spherical harmonics and spherical Bessel functions. Computation of the occupied eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a combination of preconditioned block eigensolvers and Chebyshev polynomial filter accelerated subspace iterations. Several algorithmic and computational aspects of the method, including computation of the electrostatics terms and parallelization are discussed. We have implemented these methods and algorithms into an efficient and reliable package called ClusterES (Cluster Electronic Structure). A variety of benchmark calculations employing local and non-local pseudopotentials are carried out using our package and the results are compared to the literature. Convergence properties of the basis set are discussed through numerical examples. Computations involving large systems that contain thousands of electrons are demonstrated to highlight the efficacy of our methodology. The use of our method to study clusters with arbitrary point group symmetries is briefly discussed.Comment: Manuscript submitted (with revisions) to Journal of Computational Physic

    Multi-Market Trading for Cooperative Resource Management: An Application to Water Pollution and Fisheries

    Get PDF
    Increasingly, environmental problems are recognized to involve linkages across multiple environmental variables (e.g., pollution and a fishery). Prior work on managing these complex, linked systems generally focuses on efficiency rather than implementation. However, implementation is important and will generally involve changing human behaviors within the multiple economic sectors that impact upon the multiple environmental variables. Tradable permit markets are generally seen as a coordinating mechanism, within a particular regulated sector, that enhances efficiency by incentivizing agents to respond to behavioral choices of others within the sector. However, prior work stops short of coordinating behaviors across multiple sectors for cases where society benefits from regulation in both sectors and one sector harms the other. We analyze a multi-sector permit market involving both the externality-generating sector and the affected sector. This multi-sector market provides a mechanism for agents in one sector to respond to environmental behaviors made within the other sector. Moreover, unlike traditional permit markets in which the regulated externality sector incurs only costs, we show that the multi-sector market generates efficiency gains that may be redistributed using appropriate allocations of initial endowments. Accordingly, the multi-sector market may generate gains that benefit both sectors, resulting in a win-win outcome for both sectors. We use a simple example of a polluted fishery to illustrate the approach.Permit trading, fisheries, pollution, Shapley values, bioeconomics, Environmental Economics and Policy, Resource /Energy Economics and Policy,

    Liquid Crystal Polarimetry for Metastability Exchange Optical Pumping of 3He

    Full text link
    We detail the design and operation of a compact, discharge light polarimeter for metastability exchange optical pumping of 3He gas near 1 torr under a low magnetic field. The nuclear polarization of 3He can be discerned from its electron polarization, measured via the circular polarization of 668 nm discharge light from an RF excitation. This apparatus measures the circular polarization of this very dim discharge light using a nematic liquid crystal wave retarder (LCR) and a high-gain, transimpedance amplified Si photodiode. We outline corrections required in such a measurement, and discuss contributions to its systematic error

    Monoclinic and triclinic phases in higher-order Devonshire theory

    Full text link
    Devonshire theory provides a successful phenomenological description of many cubic perovskite ferroelectrics such as BaTiO3 via a sixth-order expansion of the free energy in the polar order parameter. However, the recent discovery of a novel monoclinic ferroelectric phase in the PZT system by Noheda et al. (Appl. Phys. Lett. 74, 2059 (1999)) poses a challenge to this theory. Here, we confirm that the sixth-order Devonshire theory cannot support a monoclinic phase, and consider extensions of the theory to higher orders. We show that an eighth-order theory allows for three kinds of equilibrium phases in which the polarization is confined not to a symmetry axis but to a symmetry plane. One of these phases provides a natural description of the newly observed monoclinic phase. Moreover, the theory makes testable predictions about the nature of the phase boundaries between monoclinic, tetragonal, and rhombohedral phases. A ferroelectric phase of the lowest (triclinic) symmetry type, in which the polarization is not constrained by symmetry, does not emerge until the Devonshire theory is carried to twelfth order. A topological analysis of the critical points of the free-energy surface facilitates the discussion of the phase transition sequences.Comment: 10 pages, with 5 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/dv_pzt/index.htm

    Hydrologic Properties of Subarctic Organic Soils

    Get PDF
    Completion Report for U. S. Forest Service Institute of Northern Forestry Cooperative Agreement No. 16 USC 581; 581a-581iThe need for understanding the natural system and how it responds to various stresses is important; this is especially so in an environment where the climate not only sustains permafrost, but develops massive seasonal frost as well. Consequently, the role of the shallow surface organic layer is also quite important. Since a slight change in the soil thermal regime may bring about a phase change in the water or ice, therefore, the system response to surface alterations such as burning can be quite severe. The need for a better understanding of the behavior and properties of the organic layer is, therefore, accentuated. The central theme of this study was the examination of the hydrologic and hydraulic properties of subarctic organic soils. Summarized in this paper are the results of three aspects of subarctic organic soil examinations conducted during the duration of the project. First, a field site was set up in Washington Creek with the major emphasis on measuring numerous variables of that soil system during the summer. The greatest variations in moisture content occur in the thick organic soils that exist at this site. Our major emphasis was to study the soil moisture levels in these soils. This topic is covered in the first major section, including associated laboratory studies. Those laboratory studies include investigations of several hydraulic and hydrologic properties of taiga organic and mineral soils. Second, some field data on organic moisture levels was collected at the site of prescribed burns in Washington Creek to ascertain the sustainability of fires as a function of moisture levels. This portion of the study is described under the second major heading. The last element of this study was a continued application of the two-dimensional flow model that was developed in an earlier study funded by the U. S. Forest Service, Institute of Northern Forestry, and reported by Kane, Luthin, and Taylor (1975a). Many of the results and concepts gathered in the field work were integrated into the modeling effort, which is aimed at producing better estimates of the hydrologic effects of surface disturbances in the black spruce taiga subarctic ecosystem. This knowledge should also contribute to better fire management decisions of the same system.The work upon which this report is based was made possible by a cooperative aid agreement funded by the U. S. Forest Service, Institute of Northern Forestry, Fairbanks, Alaska. Contribution to this study was also made by Ohio State University
    • …
    corecore