111 research outputs found

    Anticoagulant effects of protamine sulfate in a canine model,

    Full text link
    Protamine sulfate is considered a weak anticoagulant, yet little is known concerning the mechanism of this effect or its relation to prior heparin exposure. This investigation defined the influence of increasing doses of protamine, with and without prior heparin anticoagulation, on the activated clotting time (ACT), thrombin clotting time (TCT), prothrombin time (PT), partial thrombosplastin time (PTT), fibrinogen level, platelet count, and platelet aggregation to ADP in dogs (n = 8). Four doses of intravenous protamine sulfate (1.5, 3.0, 6.0, and 15.0 mg/kg) were studied in each animal, with at least 5 days between individual studies. Four dogs received heparin, 150 IU/kg 10 min prior to protamine sulfate administration, and four dogs received protamine sulfate alone. Protamine sulfate caused anticoagulation, both in the presence and absence of heparin, with significant changes occurring in the ACT, PTT, platelet count, and platelet aggregation. Relevant changes did not occur in the TCT, PT, or fibrinogen levels. Platelet effects were capable of causing bleeding with standard or excess use of protamine sulfate, especially if platelet numbers were already decreased, as might occur in surgical procedures where thrombocytopenia commonly accompanies major blood loss and replacement. The ACT, reflecting both the coagulation cascade and platelet function, was the test most profoundly affected by protamine overdosage, and therefore may be misleading as a measure of protamine reversal of heparin. The TCT, which is sensitive to heparin anticoagulation but not protamine-induced anticoagulation, should be more accurate in differentiating inadequate heparin reversal from the effects of excess protamine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27223/1/0000227.pd

    Regional brain cooling induced by vascular saline infusion into ischemic territory reduces brain inflammation in stroke

    Full text link
    The neuroprotective effect of hypothermia has long been recognized. Use of hypothermia for stroke therapy, which is currently being induced by whole body surface cooling, has been largely limited because of management problems and severe side effects (i.e., pneumonia). Our recent studies have demonstrated the significant therapeutic value of local brain cooling in the ischemic territory prior to reperfusion in stroke. The goal of this study was to determine if cerebral local cooling infusion could reduce stroke-mediated brain injury by inhibiting inflammatory responses. A hollow filament was used to block the middle cerebral artery (MCA) for 3 hours, and then to locally infuse the ischemic territory with 6 ml cold saline (20°C) for 10 min prior to 48-h reperfusion. This cold saline infusion significantly ( P <0.01) reduced temperature of the MCA supplied territory (in cerebral cortex from 37.2±0.1°C to 33.4±0.4°C, in striatum from 37.5±0.2°C to 33.9±0.4°C), with the hypothermia remaining for at least 45 min after reperfusion. Consequently, significant ( P <0.01) reductions in endothelial expression of intracellular adhesion molecule-1 (ICAM-1), the key step for inflammatory progress, as well as leukocyte infiltration, were evident in both cortex and striatum after reperfusion. As a control, ischemic rats received the same amount of cold saline systemically through a femoral artery. A mild hypothermia was induced in the cerebral cortex (35.3±0.2°C) but not in the striatum (36.8±0.2°C). The reduced cortical temperature returned to normal within 5 min. Brain temperature in ischemic rats perfused locally with saline at 37°C remained normal. Intensive expression of ICAM-1 and accumulation of leukocytes was observed in ischemic control groups without brain cooling infusion. In conclusion, brain hypothermia induced by local pre-reperfusion infusion ameliorated brain inflammation from stroke.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47220/1/401_2003_Article_802.pd

    Imaging 3D Chemistry at 1 nm Resolution with Fused Multi-Modal Electron Tomography

    Full text link
    Measuring the three-dimensional (3D) distribution of chemistry in nanoscale matter is a longstanding challenge for metrological science. The inelastic scattering events required for 3D chemical imaging are too rare, requiring high beam exposure that destroys the specimen before an experiment completes. Even larger doses are required to achieve high resolution. Thus, chemical mapping in 3D has been unachievable except at lower resolution with the most radiation-hard materials. Here, high-resolution 3D chemical imaging is achieved near or below one nanometer resolution in a Au-Fe3_3O4_4 metamaterial, Co3_3O4_4 - Mn3_3O4_4 core-shell nanocrystals, and ZnS-Cu0.64_{0.64}S0.36_{0.36} nanomaterial using fused multi-modal electron tomography. Multi-modal data fusion enables high-resolution chemical tomography often with 99\% less dose by linking information encoded within both elastic (HAADF) and inelastic (EDX / EELS) signals. Now sub-nanometer 3D resolution of chemistry is measurable for a broad class of geometrically and compositionally complex materials

    Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis

    Get PDF
    In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci

    Impact of oral cyclophosphamide on health-related quality of life in patients with active scleroderma lung disease: Results from the scleroderma lung study

    Full text link
    Objective To assess the impact of cyclophosphamide (CYC) on the health-related quality of life (HRQOL) of patients with scleroderma after 12 months of treatment. Methods One hundred fifty-eight subjects participated in the Scleroderma Lung Study, with 79 each randomized to CYC and placebo arms. The study evaluated the results of 3 measures of health status: the Short Form 36 (SF-36), the Health Assessment Questionnaire (HAQ) disability index (DI), and Mahler's dyspnea index, and the results of 1 preference-based measure, the SF-6D. The differences in the HRQOL between the 2 groups at 12 months were calculated using a linear mixed model. Responsiveness was evaluated using the effect size. The proportion of subjects in each treatment group whose scores improved at least as much as or more than the minimum clinically important difference (MCID) in HRQOL measures was assessed. Results After adjustment for baseline scores, differences in the HAQ DI, SF-36 role physical, general health, vitality, role emotional, mental health scales, and SF-36 mental component summary (MCS) score were statistically significant for CYC versus placebo ( P < 0.05). Effect sizes were negligible (<0.20) for all of the scales of the SF-36, HAQ DI, and SF-6D at 12 months. In contrast, a higher proportion of patients who received CYC achieved the MCID compared with placebo in the HAQ DI score (30.9% versus 14.8%), transitional dyspnea index score (46.4% versus 12.7%), SF-36 MCS score (33.3% versus 18.5%), and SF-6D score (21.3% versus 3.8%). Conclusion One year of treatment with CYC leads to an improvement in HRQOL in patients with scleroderma lung disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56039/1/22580_ftp.pd

    Is Emotion Recognition Impaired in Individuals with Autism Spectrum Disorders?

    Get PDF
    Researchers have argued that individuals with autism spectrum disorders (ASDs) use an effortful “systematizing” process to recognize emotion expressions, whereas typically developing (TD) individuals use a more holistic process. If this is the case, individuals with ASDs should show slower and less efficient emotion recognition, particularly for socially complex emotions. We tested this account by assessing the speed and accuracy of emotion recognition while limiting exposure time and response window. Children and adolescents with ASDs showed quick and accurate recognition for most emotions, including pride, a socially complex emotion, and no differences emerged between ASD and TD groups. Furthermore, both groups trended toward higher accuracy when responding quickly, even though systematizing should promote a speed-accuracy trade-off for individuals with ASDs

    A SARS-CoV-2 RBD vaccine fused to the chemokine MIP-3α elicits sustained murine antibody responses over 12 months and enhanced lung T-cell responses

    Get PDF
    BackgroundPrevious studies have demonstrated enhanced efficacy of vaccine formulations that incorporate the chemokine macrophage inflammatory protein 3α (MIP-3α) to direct vaccine antigens to immature dendritic cells. To address the reduction in vaccine efficacy associated with a mutation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we have examined the ability of receptor-binding domain vaccines incorporating MIP-3α to sustain higher concentrations of antibody when administered intramuscularly (IM) and to more effectively elicit lung T-cell responses when administered intranasally (IN).MethodsBALB/c mice aged 6–8 weeks were immunized intramuscularly or intranasally with DNA vaccine constructs consisting of the SARS-CoV-2 receptor-binding domain alone or fused to the chemokine MIP-3α. In a small-scale (n = 3/group) experiment, mice immunized IM with electroporation were followed up for serum antibody concentrations over a period of 1 year and for bronchoalveolar antibody levels at the termination of the study. Following IN immunization with unencapsulated plasmid DNA (n = 6/group), mice were evaluated at 11 weeks for serum antibody concentrations, quantities of T cells in the lungs, and IFN-Îł- and TNF-α-expressing antigen-specific T cells in the lungs and spleen.ResultsAt 12 months postprimary vaccination, recipients of the IM vaccine incorporating MIP-3α had significantly, approximately threefold, higher serum antibody concentrations than recipients of the vaccine not incorporating MIP-3α. The area-under-the-curve analyses of the 12-month observation interval demonstrated significantly greater antibody concentrations over time in recipients of the MIP-3α vaccine formulation. At 12 months postprimary immunization, only recipients of the fusion vaccine had concentrations of serum-neutralizing activity deemed to be effective. After intranasal immunization, only recipients of the MIP-3α vaccine formulations developed T-cell responses in the lungs significantly above those of PBS controls. Low levels of serum antibody responses were obtained following IN immunization.ConclusionAlthough requiring separate IM and IN immunizations for optimal immunization, incorporating MIP-3α in a SARS-CoV-2 vaccine construct demonstrated the potential of a stable and easily produced vaccine formulation to provide the extended antibody and T-cell responses that may be required for protection in the setting of emerging SARS-CoV-2 variants. Without electroporation, simple, uncoated plasmid DNA incorporating MIP-3α administered intranasally elicited lung T-cell responses

    Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations

    Get PDF
    All authors: Olga Y. Gorlova , Yafang Li, Ivan Gorlov, Jun Ying, Wei V. Chen, Shervin Assassi, John D. Reveille, Frank C. Arnett, Xiaodong Zhou, Lara Bossini-Castillo, Elena Lopez-Isac, Marialbert Acosta-Herrera, Peter K. Gregersen, Annette T. Lee, Virginia D. Steen, Barri J. Fessler, Dinesh Khanna, Elena Schiopu, Richard M. Silver, Jerry A. Molitor, Daniel E. Furst, Suzanne Kafaja, Robert W. Simms, Robert A. Lafyatis, Patricia Carreira, Carmen Pilar Simeon, Ivan Castellvi, Emma Beltran, Norberto Ortego, Christopher I. Amos, Javier Martin, Maureen D. Mayes.Data Availability Statement: Genetic data is available from dbGaP repository (https://www.ncbi. nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_ id=phs000357.v1.p1).Gene-level analysis of ImmunoChip or genome-wide association studies (GWAS) data has not been previously reported for systemic sclerosis (SSc, scleroderma). The objective of this study was to analyze genetic susceptibility loci in SSc at the gene level and to determine if the detected associations were shared in African-American and White populations, using data from ImmunoChip and GWAS genotyping studies. The White sample included 1833 cases and 3466 controls (956 cases and 2741 controls from the US and 877 cases and 725 controls from Spain) and the African American sample, 291 cases and 260 controls. In both Whites and African Americans, we performed a gene-level analysis that integrates association statistics in a gene possibly harboring multiple SNPs with weak effect on disease risk, using Versatile Gene-based Association Study (VEGAS) software. The SNP-level analysis was performed using PLINK v.1.07. We identified 4 novel candidate genes (STAT1, FCGR2C, NIPSNAP3B, and SCT) significantly associated and 4 genes (SERBP1, PINX1, TMEM175 and EXOC2) suggestively associated with SSc in the gene level analysis in White patients. As an exploratory analysis we compared the results on Whites with those from African Americans. Of previously established susceptibility genes identified in Whites, only TNFAIP3 was significant at the nominal level (p = 6.13x10-3) in African Americans in the gene-level analysis of the ImmunoChip data. Among the top suggestive novel genes identified in Whites based on the ImmunoChip data, FCGR2C and PINX1 were only nominally significant in African Americans (p = 0.016 and p = 0.028, respectively), while among the top novel genes identified in the gene-level analysis in African Americans, UNC5C (p = 5.57x10-4) and CLEC16A (p = 0.0463) were also nominally significant in Whites. We also present the gene-level analysis of SSc clinical and autoantibody phenotypes among Whites. Our findings need to be validated by independent studies, particularly due to the limited sample size of African Americans.Funding was provided to MDM by the National Institutes of Health (NIH) the National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS https://www.niams.nih.gov/) Centers of Research Translation (CORT) P50-AR054144, NIH grant N01-AR-02251 and R01-AR-055258, and the Department of Defense (DD) Congressionally Directed Medical Research Program (http://cdmrp.army.mil/) W81XWH-07-1-011 and WX81XWH-13-1-0452 for the collection, analysis and interpretation of the data
    • 

    corecore