75 research outputs found

    The 21st International Symposium on Chironomidae

    Get PDF

    The homolog of Ciboulot in the termite (Hodotermopsis sjostedti): a multimeric β-thymosin involved in soldier-specific morphogenesis

    Get PDF
    Abstract Background Caste differentiation in social insects is a type of polyphenism that enables division of labor among members of a colony. This elaborate social integration has attracted broad interest, although little is known about its regulatory mechanisms, especially in Isoptera (termites). In this study, we analyzed soldier differentiation in the damp-wood termite Hodotermopsis sjostedti, focusing on a possible effector gene for caste development. The gene for an actin-binding protein, HsjCib, which shows a high level of expression in developing mandibles during soldier differentiation, is characterized in detail. Results To examine the HsjCib gene, full-length cDNAs were obtained by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) and sequencing. Multiple isoforms were identified, and on the basis of the results of northern and Southern hybridization analyses, these isoforms were considered to be transcriptional variants from a single gene. On the basis of their sequence similarity to homologous genes of other organisms, functions in actin assembly were assumed to be different among isoforms. Expression analysis revealed high expression in the head during soldier differentiation, which was consistent with their allometric growth. Although isoform expression was observed in various tissues, different expression levels were observed among tissues, suggesting the possibility of tissue-specific morphogenetic regulation by HsjCib isoforms. Conclusion This study revealed the characteristics and dynamics of the HsjCib gene during soldier differentiation as a potential representative of downstream effector genes in caste-specific morphogenesis. From the expression patterns observed, this gene is considered to be involved in cephalic morphogenesis and neural reorganization, resulting in the establishment of caste-specific morphology and behavior.</p

    Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki

    Get PDF
    In order to survive in extreme environments, organisms need to develop special adaptations both on physiological and molecular levels. The sleeping chironomid Polypedilum vanderplanki, inhabiting temporary water pools in semi-arid regions of Africa, is the only insect to have evolutionarily acquired the ability to withstand prolonged complete desiccation at larval stage, entering a state called anhydrobiosis. Even after years in a dry state, larvae are able to revive within a short period of time, completely restoring metabolism. Because of the possible involvement of stress proteins in the preservation of biomolecules during the anhydrobiosis of the sleeping chironomid, we have analyzed the expression of genes encoding six heat shock proteins (Pv-hsp90, Pv-hsp70, Pv-hsc70, Pv-hsp60, Pv-hsp20, and Pv-p23) and one heat shock factor (Pv-hsf1) in dehydrating, rehydrating, and heat-shocked larvae. All examined genes were significantly up-regulated in the larvae upon dehydration and several patterns of expression were detected. Gene transcript of Pv-hsf1 was up-regulated within 8 h of desiccation, followed by large shock proteins expression reaching peak at 24–48 h of desiccation. Heat-shock-responsive Pv-hsp70 and Pv-hsp60 showed a two-peak expression: in dehydrating and rehydrating larvae. Both small alpha-crystallin heat shock proteins (sHSP) transcripts were accumulated in the desiccated larvae, but showed different expression profiles. Both sHSP-coding genes were found to be heat-inducible, and Pv-hsp20 was up-regulated in the larvae at the early stage of desiccation. In contrast, expression of the second transcript, corresponding to Pv-p23, was limited to the late stages of desiccation, suggesting possible involvement of this protein in the glass-state formation in anhydrobiotic larvae. We discuss possible roles of proteins encoded by these stress genes during the different stages of anhydrobiosis in P. vanderplanki

    Resistance to Extreme Stresses by a Newly Discovered Japanese Tardigrade Species, Macrobiotus kyoukenus (Eutardigrada, Macrobiotidae)

    Get PDF
    Tardigrades are small micrometazoans able to resist several environmental stresses in any stage of their life cycle. An integrated analysis of tardigrade specimens collected in Tsukuba (Japan) revealed a peculiar morphology and a new sensory field in the cloaca. Molecular taxonomy and phylogenetic analysis on different genes (COI, ITS2, 18S and 28S) confirmed that this population is a new species, Macrobiotus kyoukenus sp. nov., belonging to the widespread Macrobiotus hufelandi group. The stress resistance capabilities of M. kyoukenus sp. nov. have been tested by submitting animals to extreme desiccation, rapid freezing, and high levels of ultraviolet radiations (UVB and UVC). Animals were able to survive desiccation (survivorship 95.71 ± 7.07%) and freezing up to -80 °C (82.33 ± 17.11%). Both hydrated and desiccated animals showed a high tolerance to increasing UV radiations: hydrated animals survived to doses up to 152.22 kJ m−2 (UVB) and up to 15.00 kJ m−2 (UVC), while desiccated specimens persisted to radiations up to 165.12 kJ m−2 (UVB) and up to 35.00 kJ m−2 (UVC). Present data contribute to the discovery of a larger tardigrade biodiversity in Japan, and the tolerance capabilities of M

    Nemesis Reconsidered

    Full text link
    The hypothesis of a companion object (Nemesis) orbiting the Sun was motivated by the claim of a terrestrial extinction periodicity, thought to be mediated by comet showers. The orbit of a distant companion to the Sun is expected to be perturbed by the Galactic tidal field and encounters with passing stars, which will induce variation in the period. We examine the evidence for the previously proposed periodicity, using two modern, greatly improved paleontological datasets of fossil biodiversity. We find that there is a narrow peak at 27 My in the cross-spectrum of extinction intensity time series between these independent datasets. This periodicity extends over a time period nearly twice that for which it was originally noted. An excess of extinction events are associated with this periodicity at 99% confidence. In this sense we confirm the originally noted feature in the time series for extinction. However, we find that it displays extremely regular timing for about 0.5 Gy. The regularity of the timing compared with earlier calculations of orbital perturbation would seem to exclude the Nemesis hypothesis as a causal factor.Comment: 10 pages, 2 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Karyotypical characteristics of two allopatric African populations of anhydrobiotic Polypedilum Kieffer, 1912 (Diptera, Chironomidae) originating from Nigeria and Malawi

    Get PDF
    The African chironomid Polypedilum vanderplanki Hinton, 1951 is the only chironomid able to withstand almost complete desiccation in an ametabolic state known as anhydrobiosis. The karyotypes of two allopatric populations of this anhydrobiotic chironomid, one from Nigeria and another from Malawi, were described according to the polytene giant chromosomes. The karyotype from the Nigerian population was presented as the reference chromosome map for P. vanderplanki. Both populations, Nigerian and Malawian, showed the same number of chromosomes (2n=8), but important differences were found in the band sequences of polytene chromosomes, and in the number and the arrangement of active regions between the two populations. Such important differences raise the possibility that the Malawian population could constitute a distinct new species of anhydrobiotic chironomid

    Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus <it>Daphnia </it>(Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In <it>D. pulex</it>, juveniles form neckteeth in response to predatory kairomones released by <it>Chaoborus </it>larvae (Insecta, Diptera).</p> <p>Results</p> <p>Previous studies suggest that the timing of the sensitivity to kairomones in <it>D. pulex </it>can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, <it>Hox3</it>, <it>extradenticle </it>and <it>escargot</it>, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, <it>JHAMT </it>and <it>Met</it>, and the insulin signaling pathway genes, <it>InR </it>and <it>IRS-1</it>, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation.</p> <p>Conclusions</p> <p>It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.</p

    Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki

    Get PDF
    Larvae of an anhydrobiotic insect, Polypedilum vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTpsα/β) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTpsα did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis

    Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with Radioresistance

    Get PDF
    Anhydrobiotic chironomid larvae can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Furthermore, while the larvae had restored physiological activity within an hour following rehydration, nuclear DNA restoration typically took 72 to 96 h. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated larvae after anhydrobiosis were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He). In contrast, low-LET radiation (gamma-rays) of the same dose caused less initial damage to the larvae, and DNA was completely repaired within within 24 h. The expression of genes encoding the DNA repair enzymes occurred upon entering anhydrobiosis and exposure to high- and low-LET radiations, indicative of DNA damage that includes double-strand breaks and their subsequent repair. The expression of antioxidant enzymes-coding genes was also elevated in the anhydrobiotic and the gamma-ray-irradiated larvae that probably functions to reduce the negative effect of reactive oxygen species upon exposure to these stresses. Indeed the mature antioxidant proteins accumulated in the dry larvae and the total activity of antioxidants increased by a 3–4 fold in association with anhydrobiosis. We conclude that one of the factors explaining the relationship between radioresistance and the ability to undergo anhydrobiosis in the sleeping chironomid could be an adaptation to desiccation-inflicted nuclear DNA damage. There were also similarities in the molecular response of the larvae to damage caused by desiccation and ionizing radiation
    corecore