643 research outputs found

    Eucalyptus Foliage Production

    Get PDF
    End of Project ReportThe main objective of this project was to determine, for the main species of Eucalyptus grown in the south west of Ireland (Kerry), the best means of pruning to optimise marketable juvenile foliage production and quality over the crops life cycle. The majority of the trials were carried out in Co. Kerry where a higher concentration of production is located. The favourable climate and light acid soils in this region promote satisfactory growth and enables harvesting to take place from autumn to March which is the premium period. Results of extensive trials over a four year trial period showed that new plantations should not be pruned until the end of the second growing season to allow the trees to become well established and help build up photosynthetic food reserves and prevent tree losses. However in some situations where very vigorous growth was achieved during the first growing season a very light pruning at 1.3 m high helped stabilise trees. After the second year's growth, pruning back to a height of 1.2 m consistently produced the highest marketable production of quality juvenile foliage of Eucalyptus species pulverulenta, perriniana, parvifolia, and 'Glaucescens' over the trial period. Pruning back to this level helped develop a single or multiple main stem framework (2-3 stems) for future production purposes, providing a nice manageable tree facilitating not only harvesting but other technical operations such as pruning and spraying. It was found that more severe pruning, especially back to 15-25 cm from the ground, reduced output and in some cases quality but was responsible for significant tree losses varying from 8-12% in the second growing year to over 30% losses with four year plantations, with further losses of 5-10% expected as well because of very weak plants. The main recommendations of this study are that no pruning be carried out for the first two growing seasons and thereafter a relatively light pruning of all main framework leaders back to 1.2 m high after the winter period. As the plantations grew older, stronger side branches could be shortened and later still could be removed to facilitate management of the crop. The light pruning treatments to 1.2 m high in contrast to the most severe pruning regimes produced no significant tree losses in the main production areas in Co. Kerry and would appear to be the most sustainable system of pruning management over the crops life cycle

    Terahertz electrical writing speed in an antiferromagnetic memory

    Get PDF
    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band

    Tracking Data Certification for the Lunar Reconnaissance Orbiter

    Get PDF
    This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification

    A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    Get PDF
    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current-voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices

    III-V semiconductor waveguides for photonic functionality at 780 nm

    Get PDF
    Photonic integrated circuits based on III-V semiconductor polarization-maintaining waveguides were designed and fabricated for the first time for application in a compact cold-atom gravimeter1,2 at an operational wavelength of 780 nm. Compared with optical fiber-based components, semiconductor waveguides achieve very compact guiding of optical signals for both passive functions, such as splitting and recombining, and for active functions, such as switching or modulation. Quantum sensors, which have enhanced sensitivity to a physical parameter as a result of their quantum nature, can be made from quantum gases of ultra-cold atoms. A cloud of ultra-cold atoms may start to exhibit quantum-mechanical properties when it is trapped and cooled using laser cooling in a magneto-optical trap, to reach milli-Kelvin temperatures. The work presented here focuses on the design and fabrication of optical devices for a quantum sensor to measure the acceleration of gravity precisely and accurately. In this case the cloud of ultra-cold atoms consists of rubidium (87Rb) atoms and the sensor exploits the hyperfine structure of the D1 transition, from an outer electronic state of 5 2S ½ to 5 2P3/2 which has an energy of 1.589 eV or 780.241 nm. The short wavelength of operation of the devices dictated stringent requirements on the Molecular Beam Epitaxy (MBE) and device fabrication in terms of anisotropy and smoothness of plasma etch processes, cross-wafer uniformities and alignment tolerances. Initial measurements of the optical loss of the polarization-maintaining waveguide, assuming Fresnel reflection losses only at the facets, suggested a loss of 8 dB cm-1, a loss coefficient, α, of 1.9 (±0.3) cm-1

    Coherent phonon optics in a chip with an electrically controlled active device

    Get PDF
    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale

    Near infrared integrated photonic switches for portable quantum sensors

    Get PDF
    A novel integrated semiconductor photonic switch, based on carrier-induced refractive index changes, has been designed and fabricated for use at near infrared wavelengths (890-920 nm, 750-780 nm and 745-775 nm). These switches are intended for use in quantum sensors which rely on the spectroscopy of caesium, rubidium or potassium atoms respectively. The beam-steering properties of the 890-920 nm device are presented and its extinction ratio measured to be 13.4 dB. This measurement was limited by coupling efficiency. Subsequent changes made to the testing equipment include the implementation of an automated testing routine. This new experimental setup will facilitate the full characterisation of the 890-920 nm device and the newly fabricated optical switches, designed for operation in the wavelength ranges 750-780 nm and 745-775 nm respectively

    Second-order phase transition at the phase boundary through the FeRh first-order metamagnetic phase transition

    Get PDF
    The phase coexistence present through first-order phase transitions implies the presence of phase boundary walls, which can be of finite size. Better understanding of the phase boundary wall properties will provide an insight into the dynamics of first-order phase transitions. Here, by combining x-ray photon correlation spectroscopy investigations with magnetometry measurements of magnetic relaxation through the thermally activated first-order metamagnetic phase transition present in the B2-ordered FeRh alloy, we are able to isolate the dynamic behaviour of the phase boundary wall present in this system. These investigations reveal a change in the nature of the dynamic behaviour and critical scaling of the relaxation time centred around the point of maximum phase coexistence within the phase transition. All of this behaviour can be attributed to the introduction of exchange coupling across the phase boundary wall and raises questions about the role of latent heat in dynamic behaviour of this region

    Fock-Darwin-like quantum dot states formed by charged Mn interstitial ions

    Get PDF
    We report a method of creating electrostatically induced quantum dots by thermal diffusion of interstitial Mn ions out of a p-type (GaMn)As layer into the vicinity of a GaAs quantum well. This approach creates deep, approximately circular, and strongly confined dotlike potential minima in a large (200  μm) mesa diode structure without need for advanced lithography or electrostatic gating. Magnetotunneling spectroscopy of an individual dot reveals the symmetry of its electronic eigenfunctions and a rich energy level spectrum of Fock-Darwin-like states with an orbital angular momentum component |lz| from 0 to 11

    The Human Disease Ontology 2022 update.

    Get PDF
    The Human Disease Ontology (DO) (www.disease-ontology.org) database, has significantly expanded the disease content and enhanced our userbase and website since the DO\u27s 2018 Nucleic Acids Research DATABASE issue paper. Conservatively, based on available resource statistics, terms from the DO have been annotated to over 1.5 million biomedical data elements and citations, a 10× increase in the past 5 years. The DO, funded as a NHGRI Genomic Resource, plays a key role in disease knowledge organization, representation, and standardization, serving as a reference framework for multiscale biomedical data integration and analysis across thousands of clinical, biomedical and computational research projects and genomic resources around the world. This update reports on the addition of 1,793 new disease terms, a 14% increase of textual definitions and the integration of 22 137 new SubClassOf axioms defining disease to disease connections representing the DO\u27s complex disease classification. The DO\u27s updated website provides multifaceted etiology searching, enhanced documentation and educational resources
    • …
    corecore