222 research outputs found

    Pulse of inflammatory proteins in the pregnant uterus of European polecats (Mustela putorius) leading to the time of implantation

    Get PDF
    Uterine secretory proteins protect the uterus and conceptuses against infection, facilitate implantation, control cellular damage resulting from implantation, and supply pre-implantation embryos with nutrients. Unlike in humans, the early conceptus of the European polecat (Mustela putorius; ferret) grows and develops free in the uterus until implanting at about 12 days after mating. We found that the proteins appearing in polecat uteri changed dramatically with time leading to implantation. Several of these proteins have also been found in pregnant uteri of other eutherian mammals. However, we found a combination of two increasingly abundant proteins that have not been recorded before in pre-placentation uteri. First, the broad-spectrum proteinase inhibitor α2-macroglobulin rose to dominate the protein profile by the time of implantation. Its functions may be to limit damage caused by the release of proteinases during implantation or infection, and to control other processes around sites of implantation. Second, lipocalin-1 (also known as tear lipocalin) also increased substantially in concentration. This protein has not previously been recorded as a uterine secretion in pregnancy in any species. If polecat lipocalin-1 has similar biological properties to that of humans, then it may have a combined function in antimicrobial protection and transporting or scavenging lipids. The changes in the uterine secretory protein repertoire of European polecats is therefore unusual, and may be representative of pre-placentation supportive uterine secretions in mustelids (otters, weasels, badgers, mink, wolverines) in general

    Identification of serum biomarkers in dogs naturally infected with <i>Babesia canis canis</i> using a proteomic approach

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Canine babesiosis is a tick-borne disease that is caused by the haemoprotozoan parasites of the genus Babesia. There are limited data on serum proteomics in dogs, and none of the effect of babesiosis on the serum proteome. The aim of this study was to identify the potential serum biomarkers of babesiosis using proteomic techniques in order to increase our understanding about disease pathogenesis.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Serum samples were collected from 25 dogs of various breeds and sex with naturally occurring babesiosis caused by B. canis canis. Blood was collected on the day of admission (day 0), and subsequently on the 1st and 6th day of treatment.&lt;p&gt;&lt;/p&gt; Two-dimensional electrophoresis (2DE) of pooled serum samples of dogs with naturally occurring babesiosis (day 0, day 1 and day 6) and healthy dogs were run in triplicate. 2DE image analysis showed 64 differentially expressed spots with p ≤ 0.05 and 49 spots with fold change ≥2. Six selected spots were excised manually and subjected to trypsin digest prior to identification by electrospray ionisation mass spectrometry on an Amazon ion trap tandem mass spectrometry (MS/MS). Mass spectrometry data was processed using Data Analysis software and the automated Matrix Science Mascot Daemon server. Protein identifications were assigned using the Mascot search engine to interrogate protein sequences in the NCBI Genbank database.&lt;p&gt;&lt;/p&gt; A number of differentially expressed serum proteins involved in inflammation mediated acute phase response, complement and coagulation cascades, apolipoproteins and vitamin D metabolism pathway were identified in dogs with babesiosis.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our findings confirmed two dominant pathogenic mechanisms of babesiosis, haemolysis and acute phase response. These results may provide possible serum biomarker candidates for clinical monitoring of babesiosis and this study could serve as the basis for further proteomic investigations in canine babesiosis

    Gentamicin-attenuated leishmania infantum vaccine: protection of dogs against canine visceral leishmaniosis in endemic area of southeast of Iran

    Get PDF
    An attenuated line of Leishmania infantum (L. infantum H-line) has been established by culturing promastigotes in vitro under gentamicin pressure. A vaccine trial was conducted using 103 naive dogs from a leishmaniosis non-endemic area (55 vaccinated and 48 unvaccinated) brought into an endemic area of southeast Iran. No local and/or general indications of disease were observed in the vaccinated dogs immediately after vaccination. The efficacy of the vaccine was evaluated after 24 months (4 sandfly transmission seasons) by serological, parasitological analyses and clinical examination. In western blot analysis of antibodies to L. infantum antigens, sera from 10 out of 31 (32.2%) unvaccinated dogs, but none of the sera from vaccinated dogs which were seropositive at &#62;100, recognized the 21 kDa antigen of L. infantum wild-type (WT). Nine out of 31 (29%) unvaccinated dogs, but none of vaccinated dogs, were positive for the presence of Leishmania DNA. One out of 46 (2.2%) vaccinated dogs and 9 out of 31 (29%) unvaccinated dogs developed clinical signs of disease. These results suggest that gentamicin-attenuated L. infantum induced a significant and strong protective effect against canine visceral leishmaniosis in the endemic area

    A defined medium for Leishmania culture allows definition of essential amino acids

    Get PDF
    Axenic culture of Leishmania is generally performed in rich, serum-supplemented media which sustain robust growth over multiple passages. The use of such undefined media, however, obscures proteomic analyses and confounds the study of metabolism. We have established a simple, defined culture medium that supports the sustained growth of promastigotes over multiple passages and which yields parasites that have similar infectivity to macrophages to parasites grown in a conventional semi-defined medium. We have exploited this medium to investigate the amino acid requirements of promastigotes in culture and have found that phenylalanine, tryptophan, arginine, leucine, lysine and valine are essential for viability in culture. Most of the 20 proteogenic amino acids promote growth of Leishmania promastigotes, with the exception of alanine, asparagine, and glycine. This defined medium will be useful for further studies of promastigote substrate requirements, and will facilitate future proteomic and metabolomic analyses

    Mirror image serum lipid carrier protein profiles in pup and lactating mother Atlantic grey seals reflect contrasting resource mobilisation challenges

    Get PDF
    Funding: The work was funded from core support given to the Sea Mammal Research Unit, Scottish Oceans Institute, from the Natural Environmental Research Council (United Kingdom).True, phocid seals have the shortest known lactations relative to body mass, during which mass transfer of adipose stores from mother to offspring occurs at an unrivalled rate and extent. The mothers of most species of seal fast until weaning whilst their pups gorge on the most fat-rich milks known. This results in a dramatic reduction in maternal blubber mass while pups may triple their body weights before weaning. Mothers mobilise their blubber fat, transport it via blood to their mammary glands and into milk, whilst pups transfer fat in the opposite direction, from their intestines, via blood, to their blubber. Using proteomic analysis of mother and pup sera from Atlantic grey seals, we find that this mirror image flux of lipids between mothers and pups is reflected in an almost inverse relationship in the proteins in their blood specialised to transport fats, lipids, and fat-soluble vitamins. For instance, apolipoproteins ApoB-48/100, ApoA-II and ApoA-IV, which are structural components of the main lipid carrier complexes such as chylomicrons and HDL particles, occur at much higher levels in pups than mothers. Meanwhile, carriers of fat-soluble vitamins such as retinol- and vitamin D-binding proteins are lower in pups and gradually build towards weaning. In contrast, sex hormone-binding globulin occurs at remarkably high relative concentrations in pups. There are therefore dramatic differences between, and an unrealised complexity in, the balance of proteins involved in the rapid transfer of fats and other lipids from mother to pups in preparing their offspring for their post-weaning fasts on land and eventual survival at sea before they can feed again.Publisher PDFPeer reviewe

    Yersinia ruckeri isolates recovered from diseased Atlantic Salmon (Salmo salar) in Scotland are more diverse than those from Rainbow Trout (Oncorhynchus mykiss) and represent distinct subpopulations

    Get PDF
    Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is known about the relationship of the isolates associated with these two species. Phenotypic approaches were used to characterize 109 Y. ruckeri isolates recovered over a 14-year period from infected Atlantic salmon in Scotland; 26 isolates from infected rainbow trout were also characterized. Biotyping, serotyping, and comparison of outer membrane protein profiles identified 19 Y. ruckeri clones associated with Atlantic salmon but only five associated with rainbow trout; none of the Atlantic salmon clones occurred in rainbow trout and vice versa. These findings suggest that distinct subpopulations of Y. ruckeri are associated with each species. A new O serotype (designated O8) was identified in 56 biotype 1 Atlantic salmon isolates and was the most common serotype identified from 2006 to 2011 and in 2014, suggesting an increased prevalence during the time period sampled. Rainbow trout isolates were represented almost exclusively by the same biotype 2, serotype O1 clone that has been responsible for the majority of ERM outbreaks in this species within the United Kingdom since the 1980s. However, the identification of two biotype 2, serotype O8 isolates in rainbow trout suggests that vaccines containing serotypes O1 and O8 should be evaluated in both rainbow trout and Atlantic salmon for application in Scotland

    Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics

    Get PDF
    A peptidomic investigation of milk from an experimental model of Streptococcus uberis mastitis in dairy cows has incorporated a study of milk high abundance and acute phase (APP) proteins as well as analysis of low molecular weight peptide biomarkers. Intramammary infection (IMI) with S. uberis caused a shift in abundance from caseins, β-lactoglobulin and α-lactalbumin to albumin, lactoferrin and IgG with the increase in lactoferrin occurring last. The APP response of haptoglobin, mammary associated serum amyloid A3 and C-reactive protein occurred between 30–48 hours post challenge with peak concentrations of APPs at 72–96 hours post challenge and declined thereafter at a rate resembling the fall in bacterial count rather than the somatic cell count. A peptide biomarker panel for IMI based on capillary electrophoresis and mass spectrometry was developed. It comprised 77 identified peptides (IMI77) composed mainly of casein derived peptides but also including peptides of glycosylation dependent cell adhesion molecule and serum amyloid A. The panel had a biomarker classification score that increased from 36 hour to 81 hour post challenge, significantly differentiating infected from non-infected milk, thus suggesting potential as a peptide biomarker panel of bovine mastitis and specifically that of S. uberis origin. The use of omic technology has shown a multifactorial cross system reaction in high and low abundance proteins and their peptide derivatives with changes of over a thousand fold in analyte levels in response to S. uberis infection

    aBravo is a novel Aedes aegypti antiviral protein that interacts with, but acts independently of, the exogenous siRNA pathway effector Dicer 2

    Get PDF
    Mosquitoes, such as Aedes aegypti, can transmit arboviruses to humans. The exogenous short interfering RNA (exo-siRNA) pathway plays a major antiviral role in controlling virus infection in mosquito cells. The Dicer 2 (Dcr2) nuclease is a key effector protein in this pathway, which cleaves viral double-stranded RNA into virus-derived siRNAs that are further loaded onto an effector called Argonaute 2 (Ago2), which as part of the multiprotein RNA-induced silencing complex (RISC) targets and cleaves viral RNA. In order to better understand the effector protein Dcr2, proteomics experiments were conducted to identify interacting cellular partners. We identified several known interacting partners including Ago2, as well as two novel and previously uncharacterized Ae. aegypti proteins. The role of these two proteins was further investigated, and their interactions with Dcr2 verified by co-immunoprecipitation. Interestingly, despite their ability to interact with Ago2 and Piwi4, neither of these proteins was found to affect exo-siRNA silencing in a reporter assay. However, one of these proteins, Q0IFK9, subsequently called aBravo (aedine broadly active antiviral protein), was found to mediate antiviral activity against positive strand RNA arboviruses. Intriguingly the presence of Dcr2 was not necessary for this effect, suggesting that this interacting antiviral effector may act as part of protein complexes with potentially separate antiviral activities

    Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics

    Get PDF
    Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously

    Uncomplicated Plasmodium vivax malaria: mapping the proteome from circulating platelets

    Get PDF
    Background: Thrombocytopenia is frequent in Plasmodium vivax malaria but the role of platelets in pathogenesis is unknown. Our study explores the platelet (PLT) proteome from uncomplicated P. vivax patients, to fingerprint molecular pathways related to platelet function. Plasma levels of Platelet factor 4 (PF4/CXCL4) and Von Willebrand factor (VWf), as well as in vitro PLTs—P. vivax infected erythrocytes (Pv-IEs) interactions were also evaluated to explore the PLT response and effect on parasite development. Methods: A cohort of 48 patients and 25 healthy controls were enrolled. PLTs were purified from 5 patients and 5 healthy controls for Liquid Chromatography–Mass spectrometry (LC–MS/MS) analysis. Plasma levels of PF4/CXCL4 and VWf were measured in all participants. Additionally, P. vivax isolates (n = 10) were co-cultured with PLTs to measure PLT activation by PF4/CXCL4 and Pv-IE schizonts formation by light microscopy. Results: The proteome from uncomplicated P. vivax patients showed 26 out of 215 proteins significantly decreased. PF4/CXCL4 was significantly decreased followed by other proteins involved in platelet activation, cytoskeletal remodeling, and endothelial adhesion, including glycoprotein V that was significantly decreased in thrombocytopenic patients. In contrast, acute phase proteins, including SERPINs and Amyloid Serum A1 were increased. High levels of VWf in plasma from patients suggested endothelial activation while PF4/CXCL4 plasma levels were similar between patients and controls. Interestingly, high levels of PF4/CXCL4 were released from PLTs—Pv-IEs co-cultures while Pv-IEs schizont formation was inhibited. Conclusions: The PLT proteome analyzed in this study suggests that PLTs actively respond to P. vivax infection. Altogether, our findings suggest important roles of PF4/CXCL4 during uncomplicated P. vivax infection through a possible intracellular localization. Our study shows that platelets are active responders to P. vivax infection, inhibiting intraerythrocytic parasite development. Future studies are needed to further investigate the molecular pathways of interaction between platelet proteins found in this study and host response, which could affect parasite control as well as disease progression
    • …
    corecore