704 research outputs found

    Lessons learned applying CASE methods/tools to Ada software development projects

    Get PDF
    This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones

    Nurses Alumni Association Bulletin, Fall 2010

    Get PDF
    2010 - 2011 Meeting Date Calendar 2011 Annual Luncheon & Meeting Notice Officers, Committee Chairs, Satellite and Volunteers Bulletin Publication Committee The President\u27s Message Treasurer\u27s Report Resume of Minutes Office News Committee Reports Social Relief Trust Fund Satellite - Harrisburg Satellite Area Scholarship Nominating Bulletin Development Annual Giving Janet C. Hindson Award Janet C. Hindson Award Criteria Janet C. Hindson Award Recipient and Nominees Janet C. Hindson Lifetime Achievement Award Assisting in the HIV I Aids Epidemic in Lesotho, Africa News About and From our Graduates Memories Era Ending Happy Birthday To Be 80 or More 50th Anniversary Class Lists for 1960 Luncheon Attendees 1961 - Anniversary Class List for 2011 Annual Luncheon Center page Why Not? It\u27s Our Money! In Memoriam, Names of Deceased Graduates Class News Additional Information, Pins, Transcript & Address Info Scholarship Fund Application Certification Reimbursement Application Relief Fund Application List of Hotels Campus Map Constitution & By-Laws Revision

    Regulation of Immune Responses by the Neonatal Fc Receptor and Its Therapeutic Implications

    Get PDF
    As a single receptor, the neonatal Fc receptor (FcRn) is critically involved in regulating albumin and IgG serum concentrations by protecting these two ligands from degradation. In addition to these essential homeostatic functions, FcRn possesses important functions in regulating immune responses that are equally as critical and are increasingly coming to attention. During the first stages of life, FcRn mediates the passive transfer of IgG across the maternal placenta or neonatal intestinal walls of mammals, thereby conferring passive immunity to the offspring before and after birth. In fact, FcRn is one of the very few molecules that are known to move from luminal to serosal membranes of polarized cells that form epithelial barriers of the lung and intestines. Together with FcRn’s recently explored critical role in eliciting MHC II presentation and MHC class I cross-presentation of IgG-complexed antigen, this renders FcRn capable of exerting broad and potent functions in regulating immune responses and immunosurveillance at mucosal sites. Further, it is now clear that FcRn dependent mucosal absorption of therapeutic molecules is a clinically feasible and potent novel route of non-invasive drug delivery, and the interaction between FcRn and IgG has also been utilized for the acquisition of humoral immunity at mucosal sites. In this review, we begin by briefly summarizing the basic knowledge on FcRn expression and IgG binding, then describe more recent discoveries pertaining to the mechanisms by which FcRn orchestrates IgG related mucosal immune responses and immunosurveillance at host–environment interfaces within the adult organism. Finally, we outline how the knowledge of actions of FcRn at mucosal boundaries can be capitalized for the development and engineering of powerful mucosal vaccination strategies and novel routes for the non-invasive delivery of Fc-based therapeutics

    The Role of FcRn in Antigen Presentation

    Get PDF
    Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors that bind IgG at the cell surface, the neonatal Fc receptor (FcRn) is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC). Cross-linking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells initiates specific mechanisms that result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both major histocompatibility complex class I and II molecules. In turn, this enables the synchronous activation of both CD4+ and CD8+ T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and cancer

    New Insights Into the Regulation of Natural-Killer Group 2 Member D (NKG2D) and NKG2D-Ligands: Endoplasmic Reticulum Stress and CEA-Related Cell Adhesion Molecule 1

    Get PDF
    Natural-killer group 2 member D (NKG2D) is a well-characterized activating receptor expressed by natural killer (NK) cells, NKT cells, activated CD8+ T cells, subsets of γδ+ T cells, and innate-like T cells. NKG2D recognizes multiple ligands (NKG2D-ligands) to mount an innate immune response against stressed, transformed or infected cells. NKG2D-ligand surface expression is tightly restricted on healthy cells through transcriptional and post-transcriptional mechanisms, while transformed or infected cells express the ligands as a danger signal. Recent studies have revealed that unfolded protein response (UPR) pathways during endoplasmic reticulum (ER) stress result in up-regulation of ULBP-related protein via the PERK-ATF4-CHOP pathway, which can be linked to the pathogenesis of autoimmune diseases. Transformed cells however possess mechanisms to escape NKG2D-mediated immune surveillance, such as upregulation of carcinoembryonic antigen (CEA)-related cell adhesion molecule 1 (CEACAM1), a negative regulator of NKG2D-ligands. In this review, we discuss mechanisms of NKG2D-ligand regulation, with a focus on newly discovered mechanisms that promote NKG2D-ligand expression on epithelial cells, including ER stress, and mechanisms that suppress NKG2D-ligand mediated killing of cancer cells, namely by co-expression of CEACAM1.Wellcome Trust Senior Investigator Award 106260/Z/14/Z, the European Research Council HORIZON2020/ERC grant no. 648889 (A.K.
    • …
    corecore