103 research outputs found

    Regulation of progesterone receptor signaling by BRCA1 in mammary cancer

    Get PDF
    Inherited mutations of the BRCA1 gene (chromosome 17q21), a tumor suppressor, lead to an increased risk of breast cancer, ovarian cancer, and several other hormone-responsive tumor types. Over the last ten years, BRCA1 has been found to play major roles in DNA damage signaling, repair, and cell cycle checkpoints. In addition, unfolding evidence suggests that BRCA1 functions as a co-regulator for steroid hormone receptors and modulates steroid hormone action. In this paper, we will briefly review this evidence and present a model to address the role of the progesterone and estrogen receptors in BRCA1 mutant mammary carcinogenesis. Finally, we will consider some of the clinical implications of this model

    Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells.

    Get PDF
    Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19-21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery

    miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis–associated genes

    Get PDF
    miRNAs are master regulators of gene expression that play key roles in cancer metastasis. During bone metastasis, metastatic tumor cells must rewire their biology and express genes that are normally expressed by bone cells (a process called osteomimicry), which endow tumor cells with full competence for outgrowth in the bone marrow. Here, we establish miR-30 family members miR-30a, miR-30b, miR-30c, miR-30d, and miR-30e as suppressors of breast cancer bone metastasis that regulate multiple pathways, including osteomimicry. Low expression of miR-30 in primary tumors from patients with breast cancer were associated with poor relapse-free survival. In addition, estrogen receptor (ER)-negative/progesterone receptor (PR)-negative breast cancer cells expressed lower miR-30 levels than their ER/PR-positive counterparts. Overexpression of miR-30 in ER/PR-negative breast cancer cells resulted in the reduction of bone metastasis burden in vivo. In vitro, miR-30 did not affect tumor cell proliferation, but did inhibit tumor cell invasion. Furthermore, overexpression of miR-30 restored bone homeostasis by reversing the effects of tumor cell–conditioned medium on osteoclastogenesis and osteoblastogenesis. A number of genes associated with osteoclastogenesis stimulation (IL8, IL11), osteoblastogenesis inhibition (DKK-1), tumor cell osteomimicry (RUNX2, CDH11), and invasiveness (CTGF, ITGA5, ITGB3) were identified as targets for repression by miR-30. Among these genes, silencing CDH11 or ITGA5 in ER-/PR-negative breast cancer cells recapitulated inhibitory effects of miR-30 on skeletal tumor burden in vivo. Overall, our findings provide evidence that miR-30 family members employ multiple mechanisms to impede breast cancer bone metastasis and may represent attractive targets for therapeutic intervention. Significance: These findings suggest miR-30 family members may serve as an effective means to therapeutically attenuate metastasis in triple-negative breast cancer

    Macrophage IL-1β-positive microvesicles exhibit thrombo-inflammatory properties and are detectable in patients with active juvenile idiopathic arthritis

    Get PDF
    ObjectiveIL-1β is a leaderless cytokine with poorly known secretory mechanisms that is barely detectable in serum of patients, including those with an IL-1β-mediated disease such as systemic juvenile idiopathic arthritis (sJIA). Leukocyte microvesicles (MVs) may be a mechanism of IL-1β secretion. The first objective of our study was to characterize IL-1β-positive MVs obtained from macrophage cell culture supernatants and to investigate their biological functions in vitro and in vivo. The second objective was to detect circulating IL-1β-positive MVs in JIA patients.MethodsMVs were purified by serial centrifugations from PBMCs, or THP-1 differentiated into macrophages, then stimulated with LPS ± ATP. MV content was analyzed for the presence of IL-1β, NLRP3 inflammasome, caspase-1, P2X7 receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-selectin expression after HUVEC co-culture and factor-Xa generation test was realized. In vivo, MVs’ ability to recruit leukocytes in a murine model of peritonitis was evaluated. Plasmatic IL-1β-positive MVs were studied ex vivo in 10 active JIA patients using flow cytometry.ResultsTHP-1-derived macrophages stimulated with LPS and ATP released MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa mature forms of IL-1β and bioactive TF. IL-1β-positive MVs expressed P2X7 receptor and released soluble IL-1β in response to ATP stimulation in vitro. In mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by treatment with the IL-1 receptor antagonist. Finally, IL-1β-positive MVs were detectable in plasma from 10 active JIA patients.ConclusionMVs shed from activated macrophages contain IL-1β, NLRP3 inflammasome components, and TF, and constitute thrombo-inflammatory vectors that can be detected in the plasma from active JIA patients

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF
    • …
    corecore