82 research outputs found

    Ethylenedioxy homologs of N-methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA) and its corresponding cathinone analog methylenedioxymethcathinone: Interactions with transporters for serotonin, dopamine, and norepinephrine

    No full text
    N-Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; 'Ecstasy'; 1) and its β-keto analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold more potent than its R(-) enantiomer at SERT, DAT, and NET, respectively. Overall, in the absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better accommodated at SERT than at DAT and NET

    161. The Potential Role of Extensor Muscle Fatigue in the Onset of Intervertebral Disc Degeneration: A Novel In Vivo Model

    Get PDF
    BACKGROUND CONTEXT: Occupation is strongly correlated to low back pain (LBP). Specific occupational activities associated with low back pain include poor posture, whole body vibration, and repetitive lifting. These activities have a common link: they result in fatigue of the primary spinal extensor musculature. This fatigue may lead to increased intervertebral loading - a stimulus for disc degeneration. If true, this association could provide a vital connection between detrimental physical activities and LBP. However, the link between muscle fatigue and increased load across the disc space has never been quantified in vivo. PURPOSE: The purpose of this study was to develop and test a wireless multi-axial force-sensing implant and large animal model of primary extensor muscle fatigue. Combined, these tools allow measurement of in vivo spinal forces during muscle fatigue to quantify changes in spine loading

    The Medicinal Chemistry of 5-HT6 Receptor Ligands with a Focus on Arylsulfonyltryptamine Analogs

    Get PDF
    Arylsulfonyl analogs of aminopyrimidines (e.g. Ro 04-6790; 2), aminopyridines (e.g. Ro 63-0563; 3), 1-phenylpiperazines (e.g. SB-271046; 4), and tryptamines (e.g. MS-245; 5) were described as the first examples of selective 5-HT6 receptor antagonists only ten years ago. Today, hundreds of compounds of seemingly diverse structure have been reported. The early antagonists featured an arylsulfonyl group leading to the widespread assumption that an arylsulfonyl moiety might be critical for binding and antagonist action. With respect to the arylsulfonyltryptamines, it seems that neither the “arylsulfonyl” nor the “tryptamine” portion of these compounds is essential for binding or for antagonist action, and some such derivatives even display agonist action. The present review describes many of the currently available 5-HT6 receptor ligands and, unlike prior reviews, provides a narrative of the thinking (where possible) that led to their design, synthesis, and evaluation. The arylsulfonyltryptamines are also used as the structural basis of attempts to relate various structure-types to one another to afford a better understanding of the overall structural requirements for 5-HT6 receptor binding

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks
    corecore