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Abstract

Arylsulfonyl analogs of aminopyrimidines (e.g. Ro 04-6790; 2), aminopyridines (e.g. Ro 63-0563; 

3), 1-phenylpiperazines (e.g. SB-271046; 4), and tryptamines (e.g. MS-245; 5) were described as 

the first examples of selective 5-HT6 receptor antagonists only ten years ago. Today, hundreds of 

compounds of seemingly diverse structure have been reported. The early antagonists featured an 

arylsulfonyl group leading to the widespread assumption that an arylsulfonyl moiety might be 

critical for binding and antagonist action. With respect to the arylsulfonyltryptamines, it seems that 

neither the “arylsulfonyl” nor the “tryptamine” portion of these compounds is essential for binding 

or for antagonist action, and some such derivatives even display agonist action. The present review 

describes many of the currently available 5-HT6 receptor ligands and, unlike prior reviews, 

provides a narrative of the thinking (where possible) that led to their design, synthesis, and 

evaluation. The arylsulfonyltryptamines are also used as the structural basis of attempts to relate 

various structure-types to one another to afford a better understanding of the overall structural 

requirements for 5-HT6 receptor binding.

5-HT6 serotonin (i.e., 5-hydroxytryptamine; 1) receptors, one of seven members (5-HT1 – 5-

HT7) of the serotonin receptor family, were first identified in the early 1990s. These 

transmembrane-spanning G-protein coupled receptors are positively coupled to an adenylate 

cyclase second messenger system. It was only a decade ago that 5-HT6-selective agents were 

unknown. Today, literally hundreds of examples have been reported. Many of the now-

available agents were developed on the basis of the structures of the first few examples that 

were described. Rather than being a comprehensive review of the literature, the intent of this 

article is to provide some historical background, and to focus on some of the more recent 

medicinal chemistry findings and how they might have been influenced, directly or 

indirectly, by the initial discovery of N1-arylsulfonyltryptamines, or at least how some of 

these structures might be structurally interrelated. Several reviews are available on the 

pharmacology and medicinal chemistry associated with 5-HT6 receptors and their ligands 
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[1–5], and a compilation of 5-HT6 receptor agents currently undergoing clinical 

development has been published [6a]. 5-HT6 receptors have been implicated as playing 

possible roles in, for example, schizophrenia, depression, obesity, memory and cognitive 

function, epilepsy, and drug abuse. As agents are identified, they are evaluated in preclinical 

assays that might support their effectiveness for the treatment of such disorders. For more 

detailed information on the pharmacology of these compounds, the interested reader is 

referred to the primary literature cited below, or to the review articles [i.e., 1–5, 6a] cited 

above.

The first examples of 5-HT6 receptor antagonists were serendipitous discoveries having their 

roots in random screening [reviewed: 2]. Interesting and curious is that, although they 

represented independent discoveries, Ro 04-6790 (2; Ki = 47 nM) and its des-aza analog Ro 

63-0563 (3; Ki = 12 nM), SB-271046 (4; Ki = 1.3 nM), and MS-245 (5; Ki = 2.1 nM) all 

possessed a sulfonamide moiety [2]. Indeed, the majority of 5-HT6 receptor antagonists still 

possess a sulfonyl-related feature. In contrast, the first 5-HT6 receptor agonist, EMDT (7), 

was designed based on the finding that 5-HT6 receptors tolerate a small alkyl group at the 

tryptamine 2-position whereas many other serotonin receptors do not [2]. 5-HT3 serotonin 

receptors are an exception; for example, 2-methyl-5-HT has long been used as a “selective” 

5-HT3 receptor agonist. However, once it was realized that 2-methyl-5-HT binds with much 

higher affinity at 5-HT6 receptors than at 5-HT3 receptors (Ki values ca. 45 nM and 1,200 

nM, respectively) [2], and that 5-HT3 receptors do not readily accommodate a methoxy 

substituent at the 5-position of the tryptamine nucleus, it was apparent that 2-substituted 5-

methoxytrptamines should be investigated. 5-Methoxy-2-methyltryptamine (6) was shown to 

bind at 5-HT6 receptors with little to no affinity (i.e., Ki >10,000 nM) for 5-HT3 receptors 

[2]. Studies aimed at increasing the lipophilicity and metabolic stability of this compound 

eventually resulted in EMDT (7; Ki = 16 nM) [7]. A related analog examined in the course 

of these studies was PMDT (8; also referred to in the literature as BGC20-761 on occasion); 

unexpectedly, PMDT (Ki = 20 nM) was demonstrated to be a 5-HT6 receptor antagonist [7]. 

Hence, shortly after the discovery of 2–5, there was evidence that a sulfonamide moiety was 

not required for binding at 5-HT6 receptors or for 5-HT6 receptor antagonist action. An 

indirect consequence of these studies was that pharmacological actions once ascribed to a 5-

HT3 receptor mechanism on the basis that they were produced by 2-methyl-5-HT, an agent 

now recognized as a 5-HT3/5-HT6 receptor agonist, were (and are still) in need of re-

examination [8].
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A rather remarkable finding was made by researchers of Esteve in 2005 [5, 9, 10]. By 

incorporating a sulfonamide moiety at the tryptamine 5-position, the resulting compounds 

(total of >50) displayed a range of functional activities at 5-HT6 receptors. For example, 

compound 9 (Ki = 7.2 nM) is 5-HT6 receptor antagonist, compound 10 (Ki = 0.8 nM) is a 

partial agonist, and compound 11 (Ki = 3.5 nM) is a full agonist [5]. E-6837 (12; Ki = 0.2 

nM) was initially reported to be an antagonist, but was subsequently found to be a 5-HT6 

receptor partial agonist in in vitro assays and a full agonist at a constitutively active 5-HT6 

receptor [5, 10].

The vast majority of investigations of 5-HT6 receptor pharmacology have employed Ro 

04-6790 (2), Ro 63-0563 (3), SB-271046 (4), and their immediate structural descendants 

and/or radiolabeled analogs. However, there is a considerable literature on 

arylsulfonyltryptamines, such as MS-245 (5) and related compounds, that has not been 

previously reviewed. The general purpose of this review is to describe the impact that 

tryptamine derivatives such as MS-245 (5), EMDT (7), and PMDT (8) have had on 5-HT6 

receptor research, to examine how various 5-HT6 receptor ligands might be structurally 

interrelated, and to attempt to synthesize concepts that might be useful for subsequent ligand 

design.
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The N1-benzenesulfonyltryptamine MS-245 (5) was independently reported by two different 

investigative groups at nearly the same time – by an academic group in 2000 [11] and by 

Merck in 2001 [12]. Both groups conducted structure-affinity relationship (SAFIR) studies, 

but the Merck group conducted more extensive pharmacological evaluations [12, 13]. Initial 

structure-affinity studies focused primarily on the benzenesulfonyl portion, tryptamine 5-

position substituents, and terminal amine substituents; the results were in general agreement 

in that a variety of substituents was tolerated on the benzenesulfonyl group or that it could 

be replaced by a 1- or 2-naphthyl group, that an indolic 5-methoxy group was generally 

optimal, and that small terminal amine substituents were preferred [11–13]. Since that time, 

numerous structure-activity studies have been conducted on N1-arylsulfonyltryptamines and 

many novel agents have been developed. Noteworthy is that an aryl group is required, but 

that an intact tryptamine nucleus is not. Introduction of an N1-arylsulfonyl group to a simple 

tryptamine parent, depending upon the particular tryptamine, can enhance affinity by at least 

10- to upwards of 100-fold [14]. There are, however, some curious exceptions. For example, 

introduction of the N1-benzenesulfonyl moiety did not enhance the affinity of 13 (Ki = 18 

nM) or 15 (Ki = 6.3 nM) (Ki = 14 nM and 17 nM for 14 and 16, respectively) [14]. Perhaps 

tryptamine analogs with large or bulky 5-position substituents bind differently than 

compounds such as MS-245 (5), or bind in a manner similar to 9–12.

What follows is a discussion of the influence on 5-HT6 receptor binding of structural 

modification of arylsulfonyltryptamines in as systematic a manner as possible.

Sulfonyl moiety

A variety of N1-aryl- or N1-heteroarylsulfonyl groups, and aryl- or heteroarylsulfonyl 

substituents, is tolerated. Indeed, manipulation of the arylsulfonyl moiety can alter affinity 

over a broad range and can also alter functional activity from antagonist to agonist action as 

will be described. It was demonstrated some time ago that N1-benzyltryptamines bind at 5-

HT6 receptors [14], but only a few examples were examined. For example, 17 (Ki = 6 nM) 

binds with an affinity comparable to its benzenesulfonyl counterpart 18 (Ki = 4.1 nM) [2]. 

This raised a question about the necessity of a sulfonyl group for binding at 5-HT6 receptors. 

A more recent study found that although N1-benzyltryptamines bind, they typically do so 

with lower affinity than their corresponding N1-benzenesulfonyl analogs, and that parallel 

structural changes within the two series (i.e., N1-benzyltryptamines and N1-

benzenesulfonyltryptamines) did not result in parallel shifts in receptor affinity [15]. On this 

basis, it was speculated that the N1-benzyl and N1-benzenesulfonyl series might be binding 

in a dissimilar manner. This is noteworthy when attempting to explain the binding of these 

agents (e.g. docking studies using graphics receptor models): does the sulfonyl group (i.e., 
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do the sulfonyl oxygen atoms) of benzenesulfonyltryptamines interact with a specific 

receptor feature? A more direct test was to examine sulfenamide 19 which lacked the two 

oxygen functions of 18; compound 19 (Ki = 90 nM) displayed 20-fold reduced affinity 

relative to 18 suggesting that one, if not both, oxygen atoms of 18 contribute to the binding 

of the N1-benzenesulfonyltryptamines [16]. The results are supported by current graphics 

models of 5-HT6 receptors, and docking studies with 5-HT6 receptor agonists and 

antagonists [16] (e.g. see Figure 1).

Terminal amine and side chain

Being a tryptamine analog, like serotonin (1) itself, it was assumed that the terminal amine 

and the aminoethyl chain would be required for binding. It was found that small alkylamine 

substituents were generally tolerated, but that larger substituents typically resulted in 

decreased 5-HT6 receptor affinity [11–14]. The presence of the amine itself was assumed to 

be essential. This was especially true when it was considered that this amine most likely 

interacts with the 5-HT6 receptor TM3 aspartate moiety (i.e., the aspartate residue in the 

third transmembrane helix of 5-HT6 receptors) [16]. However, shortening the chain of 18 to 

its corresponding gramine counterpart (20; Ki = 3.1 nM) did not adversely impact affinity, 

and 20 retained 5-HT6 receptor antagonist action [17]. The results were wholly unexpected. 

Table 1 shows a comparison of several additional tryptamine and gramine analogs and, with 

the exception of 25, chain shortening had little effect on 5-HT6 receptor affinity.
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So, a tryptamine is not required for binding. This led to another question: is the terminal 

amine itself required for binding? The hypothesis might be tested by removing the terminal 

amine; because removal of the amine would result in a water insoluble compound, it was 

necessary to locate a distant region of the molecule where an amine could be introduced to 

facilitate the preparation of a water-soluble salt. Compounds 28 and 29 (Ki = 12 and 10 nM, 

respectively) were found to bind with high affinity at 5-HT6 receptors [e.g. see: 19]. Similar 

results were obtained with 30 and 31 (Ki = 2.0 and 29 nM, respectively).

At this point, structures such as 29 were beginning to take on some structural resemblance to 

Ro 04-6790 (2) and Ro 63-0563 (3) and it was considered that they might possibly represent 

conformationally constrained analogs of these ligands. Ro 04-6790 (2) and Ro 63-0563 (3) 

possess five or four, respectively, basic nitrogen atoms and it is not known with certainty 

which one(s) is (are) crucial for binding [e.g. see: 20]. An investigation was undertaken 

whereby methylamino groups were added to the structure of 29 [19]. The results were 

inconclusive. That is, although the tri-amine 32 (Ki = 1.9 nM) displayed higher affinity than 

29 (Ki = 10 nM) or di-amines 33, 34, and 35 (Ki = 21, 7.0, and 26 nM, respectively) [19], 

the range of affinities was very narrow making it impossible to determine which amine 

might be more important than another for binding. Of interest, though, was the finding that 

no particular amine, including the benzenesulfonyl amine (i.e., see 35), seemed essential for 

binding. But, this, too, was less than clear because 36 (Ki = 217 nM) displayed much lower 

affinity than 33 [21]. On the basis of superimposition studies, it was speculated that in some 

cases where a 4’-amino group is present the 4’-amino arylsulfonylindoles might bind 

“upside-down” relative to the arylsulfonyltryptamines [21]. That is, in the absence of the 

tryptamine side chain, the 4’-amino group might utilize the same amine binding site, 

presumably the TM3 aspartate, as the terminal amine of the arylsulfonyltryptamine analogs.

In comparison with Ro 63-0563 (3), to determine if the pyridine ring nitrogen atom is 

contributory to binding, several 5-azaindoles were examined. Compound 37 (Ki = 84 nM) 

displayed reduced affinity relative to 18 (Ki = 4.1 nM), as did 38 (Ki = 41 nM) relative to 28 
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(Ki = 12 nM) [22]. Nevertheless, these compounds possessed affinities similar to those of 2 
and 3.

Interestingly, the di-nitro counterpart of 32 (i.e., 39, Ki ca. 1,000 nM) displayed low affinity 

for 5-HT6 receptors suggesting that the methylamine groups of 32 might be making an 

electronic contribution to binding [19]. Accordingly, several analogs were prepared that 

possessed electron-donating methoxy groups; in each case, the methoxy compounds (i.e., 

40, 41, 42; Ki = 3.3, 1.8, and 0.8 nM, respectively) displayed higher affinity than their 

corresponding methylamine analogs [23]. The affinity of 42 was 15 times higher than that of 

Ro 63-0563 (3), and nearly 60 times that of Ro 04-6790 (2). Introduction of a 5-methoxy or 

7-methoxy group (43 and 44, Ki = 22 and 53 nM, respectively), examined simply to 

complete the series, did not have this affinity-enhancing effect [21].

Introduction of a 4’-amino group was generally tolerated for the interaction of 

benzenesulfonyltryptamines and benzenesulfonylindoles at 5-HT6 receptors and often 

resulted in several-fold enhanced affinity [e.g. 17]. Similar results were seen with the 

“tricyclic tryptamines”; for example conversion of the des-4’-amino analog of 30 (structure 

not shown, Ki = 1.5 nM) to its 4’-amino counterpart 30 (Ki = 2.0 nM) was tolerated [24]. 

But, the “tricyclic indoles” seemed to behave differently than the simpler indoles. For 

example, rather than showing enhanced affinity, methylamino analogs 45 (Ki = 165 nM) and 

46 (Ki = 205 nM), and the dimethoxy analog 47 (Ki = 200 nM), as compared with 33, 34, 

and 42, respectively, displayed lower affinity than 31 (Ki = 29 nM); this led to the suggestion 

that tricyclic indoles (i.e., tetrahydrocarbazoles) might bind differently than the other 

compounds previously examined [21].
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Arylsulfonyl moiety

A wide variety of N1-arylsulfonyl (e.g. substituted phenyl, 1-naphthyl, 2-naphthyl, various 

heteroaryl) groups has been examined [5, 11] and an entire review could be written on this 

topic alone. However, replacement of the N1-arylsulfonyl group by an N1-alkylsulfonyl or 

branched alkylsulfonyl group (i.e. 48) resulted in low-affinity compounds [15]. This likely 

excludes a simple hydrophobic-type of interaction between the aryl group and the receptor. 

Also, aryl substituents can have a very dramatic influence on affinity. For example, 

translocation and extension of the 4’-position amine substituent was investigated. Compound 

49 (Ki = 0.8 nM) [17], the 4’-amino counterpart of 18 (Ki = 4.1 nM), binds with 5-fold 

enhanced affinity. Moving the amino group to the 3’-position (50, Ki = 2.1 nM) was 

tolerated; but, insertion of a methylene group between the amine and the aromatic ring (i.e., 

51, Ki = 2,360 nM; 52, Ki = 960 nM) reduced affinity considerably [18].

Of interest was the preferred conformation of the arylsulfonyl moiety upon binding to the 

receptor. To address this question, several conformationally-constrained analogs were 

examined. Compound 53 was of particular interest because it represented a hybrid of 18 and 

the general structure of the 5-HT6 antagonist PMDT (8) (see 57 below). That both 53 (Ki = 

143 nM and 54 (Ki = 4,500 nM) bind with lower affinity than 18 (Ki = 4.1 nM) led to 

speculation that neither of these structures represented a preferred binding conformation for 

the arylsulfonyl group and that a more gauche conformation was probably optimal [25]. 

Alternatively, the constrained structure also imposed conformational restrictions on the 2-

phenyl group of PMDT-like compounds that might be less than optimal. Somewhat similar 

results were obtained with constrained analogs of 17 (i.e., 55 and 56; Ki = 60 and 3,770 nM, 

respectively) [21].
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This led to another question. The 2-phenyl compound PMDT (8) and the N1-

benzenesulfonyl compound 18 are 5-HT6 receptor antagonists. Can the receptor tolerate 

both substituents at the same time? Indeed, as shown in Table 2, introduction of the N1-

benzenesulfonyl substituent resulted in enhanced affinity in the presence of a 2-phenyl 

group. In light of this new information, had it been available at the time, it might have been 

unreasonable to expect that 53 should bind with high affinity.

Indole ring

Early questions addressed the necessity or importance of an intact indole nucleus. 

Obviously, the binding of compounds such as Ro 04-6790 (2), Ro 63-0563 (3) and 

SB-271046 (4) indicated that an indole ring is not required for 5-HT6 receptor binding. 

Because of the uncertainty of how arylsulfonyltryptamines or arylsulfonylindoles bind 

relative to 2–4, it was not yet appropriate to extrapolate between indole-containing and 

indole-lacking structures. So, the question became: is the presence of the indole nitrogen 

atom a prerequisite for the binding of tryptamine (or indole-related) analogs at 5-HT6 

receptors?

Indene 66 (Ki = 57 nM), lacking an indolic N1 nitrogen atom, displayed 10-fold lower 

affinity than 17 (Ki = 6 nM); but, the reduced affinity of 66 might be explained by the 

conformational restraint imposed on the “benzyl” group by the benzylidene moiety [26]. The 

reduced analog of 66 (i.e., 67, Ki = 3 nM) displayed an affinity comparable to 17 indicating 

that the indole nitrogen atom was not required for binding [26]. Taking advantage of this 

observation, a series of 5-substituted indene analogs was recently examined [27]. 

Compounds 68 (Ki = 50.6 nM) was found to be an agonist, as was 69 (E-15136; Ki = 4.5 

nM) [28]. A particularly nice comparison is the structural relationship between 69 and the 

agonist 70 (E-6801; Ki = 2.2 nM) [28]. Of note is that WAY-181187 (71, Ki = 2 nM), which 

bears the same arylsulfonyl group as 69 and 70, but at the indole 1-position, has been 

reported to be a potent, selective, and orally available 5-HT6 receptor agonist [29].

The necessity of the indole nitrogen atom could also be assessed by an examination of 

isotryptamines wherein the nitrogen atom has been effectively moved from the tryptamine 

“1-position” to the “3-position”. Compounds 72 (Ki = 20 nM) and 73 (Ki = 22 nM) bind at 
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5-HT6 receptors, and the latter is an antagonist [30]. Likewise, the benzyl analog 74 (Ki = 32 

nM) also binds [26].

From these studies, it might be concluded that the presence of an indolic nitrogen atom, at 

the “ring 1-position”, is not a prerequisite for binding. Additional studies will be described 

below.

Side chain conformation

Lysergic acid diethylamide (Ki ca. 1 nM), although non-selective, binds with high affinity at 

5-HT6 receptors suggesting that tryptamines might adopt an ergoline-like conformation 

upon binding [31]. Merck investigators demonstrated that the benz[cd]indole 75 (Ki = 7.2 

nM) binds at 5-HT6 receptors; they also demonstrated that the N,N-dimethylaminoethyl 

chain of 18 could be moved from the indole 3-position to the 4-position (76, Ki = 1.5 nM) 

[12]. Although 75 possessed a benzylic hydroxyl group, a 4’-methyl group, and the 

stereochemistry of 75 was undefined (except that the hydroxyl and amine groups were trans 

to one another) – making it difficult to formulate structure-affinity comparisons – 

consideration of the results from 75 together with those from 76 provided some insight 

about the conformation of the side chain necessary for binding. A structurally simpler 

benz[cd]indole was later prepared and the racemate displayed high affinity (i.e., racemic 77, 

Ki = 1.6 nM); (-)-77 (Ki = 0.7 nM) displayed 5-fold higher affinity than (+)-77 (Ki = 3.4 

nM) [18].

The indole nucleus of 18 (Ki = 4.1 nM) was “bisected” to 78 (Ki = 52 nM) and 80 (Ki = 15 

nM) with each bearing the N,N-dimethylaminoethyl chain (viz: 5 and 76). The primary 

amine 79 (Ki = 21 nM) displayed twice the affinity of 78 [32]. Furthermore, the flexible 

chain of 78 was constrained to aminotetralin 81. There was little difference in the affinities 

of R-(+)-81 (Ki = 49 nM) and S-(-)-81 (Ki = 90 nM) [16], and their affinities were 

comparable to that of 78. This argues that an ergoline-type conformation is important; but, it 

also argues (due to the higher affinity of 76 and 77), that an intact indolic nucleus, although 

perhaps not required, might be optimal for high affinity.
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Consistent with the above findings, conformationally constrained analogs of gramines 20 (Ki 

= 3.1 nM) and 82 (Ki = 6.9 nM) [17], which constrain the side chain in a “non-ergoline” 

type of conformation (i.e., 83 and 84; Ki = 155 and 140 nM, respectively) displayed 

substantially reduced affinity [18]. Taken together, the results indicated that ergoline-type 

conformations of arylsulfonyltryptamines are probably optimal (but: see below), and that 

stereochemistry about the ergoline 4-position is playing a role (but a minimal role) in 

binding. In addition, the results supplement the above argument that while an intact indole, 

or the presence of an indolic nitrogen atom, is not an absolute requirement for binding, the 

presence of both might be optimal.

In their review, Holenz et al. [5] provided binding data on a variety of conformationally 

constrained tryptamines or tryptamine-related agents (examples include racemic 85 and 86; 

Ki = 1 nM and 58 nM, respectively). Wyeth has recently described a series of azepinoindoles 

(e.g. 87; Ki = 19 nM) [33], as has GlaxoSmithKline (i.e., 88; functional Ki in a cAMP 

accumulation assay = 1.6 nM) [34]. These revelations, coupled with the binding of gramines 

(see Table 1), benzenesulfonylindoles such as 32, 42, Esteve compounds such as 7, as well 

as others (see below), give reason for pause when attempting to envision how these agents 

bind at 5-HT6 receptors. They also create problems in QSAR and molecular modeling 

studies where assumptions are made on how to superimpose indolic nuclei. Is an ergoline-

like conformation really that important? Or, is it just one of several possible tryptamine 

conformations accepted by 5-HT6 receptors?
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Side chain modifications

During the past 25 or so years of serotonin receptor research, medicinal chemists have found 

that the “tryptamine core” of serotonin often can be replaced with other structurally related 

moieties that, sometimes, results in interesting and subtype-selective agents. Hence, it was 

logical that some of these “cores” be examined in the 5-HT6 field; this strategy is especially 

attractive when it is realized that incorporation of an N1-arylsulfonyl moiety typically 

renders agents selective for 5-HT6 (sometimes 5-HT7) receptors (indeed, there is increased 

focus on comparing 5-HT6 versus 5-HT7 receptor affinity for novel agents that are being 

developed). Such studies, which might identify new compounds, and new “cores”, are well 

worth the effort. An example already discussed is the isotryptamines (initially identified in 

studies with 5-HT1A receptors). There are several other core structures that have been 

exploited and, actually, some novel cores have been identified.

Wyeth found that piperidinoindole analogs of 18 (Ki = 4.1 nM) bind with high affinity at 5-

HT6 receptors (89, Ki = 2 nM; 90, Ki = 12 nM). However, distinction in 5-HT6 receptor 

affinity between the saturated (i.e., single bond) and unsaturated (i.e., double bond) series 

was lost upon introduction of a 4’-amino group (91, Ki = 1 nM; 92, Ki = 2 nM); furthermore, 

all analogs behaved as 5-HT6 receptor antagonists, but the presence of a 4’-amino group 

resulted in enhanced antagonist potency in functional assays [35].
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High-throughput screening by Merck led to the discovery of the antagonist 93 (IC50 = 2 nM) 

[36]. By analogy to the structures of the antagonist PMDT (8) and the agonist EMDT (7), 

the investigators speculated that 94 would be an agonist. This was found to be the case (94, 

IC50 = 90 nM); furthermore, structure-activity studies allowed the identification of an even 

higher-affinity, more selective agonist (95, IC50 = 7.4 nM) [36] with structural similarity to 

6. Bearing a piperidine ring substituent, analogs 96 (Ki values ranging from 1 to 24 nM) 

were identified as 5-HT6 receptor antagonists [9], as was the ester LY-483518 (also known 

as SGS518, 97; Ki = 1.3 nM) [5].

Moving the position of the piperidine nitrogen atom of 89/90 also resulted in some 

interesting compounds. Compound 98 (Ki = 4.6 nM) was found to bind with high affinity; 

but, when the double bond was reduced (99; racemate Ki = 2 nM), this created two optical 

isomers. The two enantiomers of the reduced compound (i.e., 99) were separated and one 

(Ki = 3 nM) lacked agonist activity whereas the other (Ki = 1 nM) was a full agonist. Here is 

an example of where stereochemistry controlled functional activity [37].
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Contraction of the six-membered ring of 99 to a pyrrolidine ring resulted in a series of high-

affinity antagonists (100; Ki values ranging from 1 to 15 nM depending on the identity of the 

aryl substituent) [36]. Allelix Pharmaceuticals identified 101; they reported in the patent 

literature [38] that the R-isomer of this compound was a 5-HT6 receptor antagonist with 

very high affinity (Ki <10 nM) without disclosing its physicochemical characteristics, or 

describing it’s opposite enantiomer. Subsequently, Abate et al. [39] reported that the fully 

characterized R-(+)-101 (Ki = 0.3 nM) binds with 5-fold higher higher affinity than its S-

(+)-101 isomer (Ki = 1.7 nM) [39]. Qualitatively similar binding results were obtained with 

the 3-benzylisotryptamine 102; that is, R-(-)-102 (Ki = 0.9 nM) displayed a higher affinity 

than S-(+)-102 (Ki = 29 nM) [39]. Wyeth reported Ki values of 8.0 and 5.0 nM, respectively, 

for the two 101 isomers, but found that the lower-affinity R-(+)-101 was the more effective 

of the two as an antagonist [37]. Interestingly, whereas S-103 functioned as an antagonist, its 

R-enantiomer was an agonist [40]. Overall, stereoselectivity did not seem to be a controlling 

factor (i.e., stereoselectivity might play a role, but does not seem to be a major determinant) 

for binding, but can play a role in functional potency.
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Other core modifications

Depending upon substituents that are present in the molecule, 1-naphthylpiperazines bind at 

a number of different populations of 5-HT receptors but are, generally, non-selective ligands. 

In other words, the naphthylpiperazine core is a rather “neutral” core and, by itself, does not 

confer any selectivity. Because it had been demonstrated by several investigators, for other 

series of 5-HT6 receptor ligands, that the arylsulfonamide could be replaced by an aryl 

sulfone, compound 104 (Ki = 3.8 nM) was prepared and found to bind with high affinity 

[41]. Its 4’-amino counterpart 105 (Ki = 0.9 nM) displayed somewhat enhanced affinity [41]. 

The azanaphthyl compound (i.e., the 3-substituted 8-aminoquinoline) SB-742457 (106; Ki 

ca. 0.2 nM) is a 5-HT6 receptor antagonist [4].The binding of the naphthylpiperazine 

counterparts of EMDT (7) and PMDT (8), that is 107 and 108 (Ki = 21 nM and 9.3 nM, 

respectively) [41], supported the contention that the 1-naphthylpiperazine core might be 

useful for development of novel 5-HT6 receptor ligands, and further supports the idea that 

neither an indole nucleus, indole nitrogen atom, nor tryptamine side chain is required for 

binding.
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Although 1-(2-methoxyphenyl)piperazine (109; Ki = 1,200 nM) binds with low affinity at 5-

HT6 receptors [31], introduction of the appropriate arylsulfonamide results in high-affinity 

compounds, (e.g. SB-271046; 4). Given the rotational flexibility about the aryl-piperazine 

bond found in the naphthylpiperazines, 4-(1-piperazino)indoles might represent yet another 

template for 5-HT6 receptor ligands. Indeed, piperazinoindoles could conceivably represent 

a conformationally constrained form of phenylpiperazines such as SB-271046 (4) much in 

the same manner that compounds such as 32 might represent conformationally constrained 

analogs of Ro 04-6790 (2) and Ro 63-0563 (3) as discussed above. Accordingly, several 

piperazinoindoles were prepared and evaluated. The N1-unsubstituted piperazinoindole 110 
(Ki = 2,700 nM) displayed very low affinity [19]. However, incorporation of an N1-

benzenesulfonyl moiety resulted in a dramatic enhancement of affinity (111; Ki = 1.0 nM) 

[19]. Moreover, although known that introduction of an N1-arylsulfonamide can enhance 

affinity, this is one of the largest enhancements observed to date. Further incorporation of a 

4’-amino group led to a slight increase in 5-HT6 receptor affinity (112; Ki = 0.4 nM) [19]. 

Compound 111 was also independently reported by GlaxoSmithKline, who designed the 

compound using the same conformational-constraint strategy, to bind with high affinity (Ki 

ca. 0.3 nM), and further identified 113 (Ki ca. 3 nM) as a selective, brain-penetrant 5-HT6 

receptor antagonist [42]. Again showing the utility of the isotryptamine core, 114 (Ki ca. 3 

nM) displayed an affinity comparable to that of 113, and the N-methyl group of 114 could 
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be replaced by either an oxygen or a sulfur atom (115 and 116; Ki ca. 1 nM and 0.5 nM, 

respectively) [42]. Roche has patented a related benzimidazolone (117; Ki ca. 0.3 nM) [6a].

Investigators at Wyeth replaced the piperazine moiety of SB-271046 (4)-related agents with 

an aminoethoxy group to identify a novel series of indolic 5-HT6 receptor antagonists 

including 118 (Ki = 1 nM) [43]. A series of related compounds was prepared where the 

aminoethoxy group was located at the indole 3-position (i.e., 119) [44]; unfortunately, no 

binding data were reported.

Other indole-related cores include 5-azatryptamines (e.g. 37), 5-azaindoles (e.g. 38) [22], 

and 7-azaindoles [45]. For example, the 7-azaindole 120 (Ki = 1.3 nM) was found to be a 5-
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HT6 receptor partial agonist whereas 121 (Ki = 4.3 nM) was an antagonist; also, 122 (Ki = 

2.0 nM) was an antagonist whereas 123 (Ki = 2.4 nM) was a partial agonist [45].

Indazoles might be viewed as representing yet another class of “azaindoles”, and compound 

124 (Ki = 7.9 nM) [46] bears some structural resemblance to 118. Although moving the side 

chain to the ring 5-position decreased affinity by about 6-fold, the 6-substituted compound 

displayed enhanced affinity (125; Ki = 0.5 nM). Other modifications included cyclization of 

the side chain to 126 (Ki = 2.3 nM) and 127 (Ki = 1.3 nM) [46].

As already discussed, the bicyclic indole ring is not required for binding at 5-HT6 receptors. 

In fact, various monocyclic arylamines (e.g. 2, 3) display affinity for this population of 

receptors. Monocyclic analogs of 104 have been examined. The 4-substituted sulfonamide 

128 (Ki = 85 nM) displayed lower affinity than 104, but the sulfonamide was also tolerated 

at the 3-position (129; Ki = 62 nM) [32]. Unexpectedly, it was found that conversion of 128 
to its corresponding sulfone (i.e., 130; Ki = 6.9 nM) resulted in enhanced affinity, and in an 

affinity approximating that of 104 [32]. The 3-substituted sulfone displayed even higher 

affinity (131; Ki = 1.2 nM) [32]. Showing that this is not a nonspecific effect, the 2-

substituted compound did not bind as well (132; Ki = 4,000 nM) [32].
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Esteve screened a large virtual library of compounds and identified a set of 2000 compounds 

that might bind at 5-HT6 receptors; further refinement of the model identified 235 

compounds of interest. This screening led to several monocyclic arypiperazines such as 133 
and 134 [47]. Compound 133 (Ki = 27 nM) behaved as a partial agonist whereas 134 (Ki = 8 

nM) was an agonist [47]. Noteworthy is that these compounds do not possess a sulfonamide 

or sulfone moiety. Roche has also examined arylpiperazines as conformationally constrained 

analogs of SB-271046 (4). A series of dihydrobenzoxazines was prepared and evaluated, 

structure-affinity relationships were examined, and the highest-affinity ligand identified was 

the antagonist 135 (Ki ca. 0.1 nM) [48].

Investigators at Pfizer identified phenylpiperazine 136 (Ki = 1.3 nM) by high-throughput 

screening; the structure was modified to phenylpiperidine 137 (Ki = 6.9 and 39.8 nM for 

S-137 and R-137, respectively) that showed a better ADME and selectivity profile [49]. 

Several sulfonates such as 138 (Ki = 5.9 nM) were also examined [49].

Phenylethylamines have been used as 1-(phenyl)piperazine mimics. Indeed, it was discussed 

above that certain phenylethylamines (e.g. 78 and 79; Ki = 52 nM and 21 nM, respectively) 

bind at 5-HT6 receptors [32]. The “reverse sulfonamide” of 78 (i.e., 139; Ki = 70 nM) as 

well as its sulfone counterpart 140 (Ki = 50 nM) retained the affinity of 78 [32]. By analogy 
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to results obtained with 104, several 4-substituted phenylethylamines were examined. 

Sulfonamide 141 (Ki = 38 nM) displayed an affinity comparable to 79, but less than that of 

104; sulfone 142 (Ki = 37 nM) possessed similar affinity [32]. An α-methyl group was 

incorporated into 141 to assess the effect of stereochemistry; the R- and S-isomers of 143 
(Ki = 34 nM and 100 nM, respectively) again showed that stereochemistry about this 

position plays a minimal role in binding [21] and the results were consistent with those 

obtained with the isomers of aminotetralin 81. Similar results were obtained with sulfone 

144 (Ki = 73 nM and 177 nM for the R- and S-isomers, respectively) [18].

In order to determine if it was simply the presence of the aryl group of the 3-position 

substituent of 139 that was responsible for 5-HT6 receptor affinity, several simplified 

analogs possessing a spacer in place of the sulfonamide were evaluated. The low affinities of 

145, 146, and 147 (Ki = 930 nM, 173 nM, and 630 nM, respectively) indicate that the 

sulfonyl portion of 139 contributes to binding [18].
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As described earlier, insertion of a methylene group between the 4’-amine and aryl ring of 

4’-benzenesulfonyltryptamines resulted in decreased affinity (e.g. compare the nearly 3,000-

fold difference in affinity between 49 and 51). However, this same molecular modification of 

4’-arylsulfonylindole 29 (Ki = 10 nM) had little effect on affinity (i.e. 148, Ki = 25 nM), 

once again suggesting that some arylsulfonyltryptamines and arylsulfonylindoles might bind 

differently. Further homologation of the chain in 148 to 149 (Ki = 2.5 nM) resulted in 

enhanced affinity [18]. Compound 149 now contains a phenylethylamine, leading to the 

suggestion that 149 might bind in an orientation similar to that of other phenylethylamine 

analogs (e.g. as shown by 149b). Compound 150 (Ki = 59 nM) is the “reverse sulfonamide” 

of 141 (Ki = 38 nM). Hence, 149 might be viewed as a conformationally constrained analog 

of 141.
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While on the topic of phenylethylamines, gramines might be viewed as a partially 

conformationally constrained phenylethylamine; that is, the benzenesulfonylgramines might 

conceivably interact with 5-HT6 receptors in an orientation (e.g. see 151) where the N1-

arylsulfonyl moiety mimics the 5-position arylsulfonyl portion of compounds such as 7-9. If 

this is the case, there might be no correspondence between the affinities of a series of 

substituted benzenesulfonylgramine and benzenesulfonyltryptamines. However, the binding 

data in Table 1 tend to argue against this.

Glennon et al. Page 22

Curr Top Med Chem. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Compound 152 (Ki = 1.7 nM) is a reverse sulfonamide with an aminotetralin core whereas 

153 (Ki ca. 0.7 nM) is a partially conformationally constrained phenylethylamine; both have 

been patented [6]. Despite lacking an ergoline-type conformation, compound 154 (Ki ca. 25 

nM) possessed an affinity similar to that of 142 and 143 [50]. Nevertheless, increasing the 

size of the 6-membered ring afforded 155 (Ki ca. 1 nM) that displayed enhanced affinity 

[50].

Wyeth has described a series of benzoxazoles as 5-HT6 receptor antagonists (e.g. 156; Ki = 

7.1 nM) [51]. Might these represent conformationally constrained analogs of 140; is the 

intact piperazine moiety required for binding? These are questions that will need to be 

answered.
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All this having been said, novel 5-HT6 receptor ligands continue to be developed with non-

indolic cores that are seemingly unrelated to those described above. For example, 

quinolinedione 157 where R = H (Ki = 54.7 nM) was identified by high-throughput 

screening as a novel 5-HT6 receptor antagonist [52]. Introduction of a p-hydroxyl group 

(i.e., 157, R = OH; Ki = 12.3 nM) resulted in a higher-affinity compound [52]. Remarkable 

is that these compounds, unlike all the others described herein, lack a basic nitrogen atom. 

On the other hand, 158 (IC50 = 4 nM), identified on the basis of virtual screening, was 

shown several years ago to be a 5-HT6 receptor antagonist [53]; its structural resemblance to 

157 might offer some clues to how these agents bind.

QSAR and molecular modeling studies

In the early days of 5-HT6 receptor research, it was assumed that introduction of an N1-

arylsulfonyl substituent converted a simple tryptamine from a 5-HT6 receptor agonist to a 5-

HT6 receptor antagonist. This is now known to be a false assumption; it is true that many 

N1-arylsulfonyltryptamines (see above discussion) display actions as antagonists; however, 

some behave as partial agonists, and yet others as full agonists. 5-HT6 receptor agonists and 
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antagonists might bind differently [16]. But, the question remains: do tryptamine-derived 

antagonists bind more like the tryptamine agonists or like non-tryptamine antagonists?

Various QSAR and molecular modeling studies have been reported [e.g. 16, 20, 54–57], and 

they have advanced our understanding of what structural features might be important for 

binding and how they might interact with amino acid residues of 5-HT6 receptor graphics 

models. Nevertheless, such studies may be in need of constant revision as new compounds 

are identified that challenge established concepts.

Summary

This review has attempted to address the impact, direct or indirect, that N1-

arylsulfonyltryptamines and N1-arylsulfonylindoles have had on the identification and 

development of novel 5-HT6 receptor ligands, and makes an attempt to show (often in 

retrospect) how the many currently available agents might be related to one another. The 

important issues of 5-HT6 receptor selectivity, bioavailability, and pharmacokinetics were 

not addressed; indeed, it is generally more important, from our perspective, to understand 

how compounds bind at a receptor before tackling these issues, and information derived 

from structure-affinity and structure-activity studies can often aid in the design of agents 

with greater selectivity and bioavailability. Gratitude is owed to investigators at Esteve for 

providing exhaustive compilations [5, 6a] of the many structure-types found in the primary 

scientific and patent literature that bind at 5-HT6 receptors. But, the present review (although 

acknowledging their reviews) differs in that it is (1) not as comprehensive; the present 

review attempts to show how various structure-types might be related to one another and, (2) 

where possible, to provide the thinking of those who were preparing these compounds. 

Where hypotheses were described, they are provided here. In many instances, the design 

approaches taken were quite rational. Often, no attempt was made to maximize affinity or 

activity within a given series; rather, specific questions were being addressed such as: what 

is a preferred conformation for binding; what is the necessity or contribution of a particular 

substituent to 5-HT6 receptor affinity? There is certainly room to improve upon the affinity, 

selectivity, bioavailability, and pharmacokinetics of many of these compounds. Obviously, 

high-throughput screening and virtual screening methods have sometimes resulted in novel 

structure-types; docking of agents to graphics models of 5-HT6 receptors and QSAR studies 

also have made contributions. Needless to say, a wide variety of 5-HT6 receptor agonists, 

partial agonists, and antagonists have been developed during the past decade. It is still 

uncertain how all these compounds bind relative to one another. However, there are some 

intriguing clues that might eventually lead to a global model of interaction (or, perhaps, to 

more than one model – which seems more likely).

Arylsulfonyltryptamines as 5-HT6 receptor ligands represent a serendipitous discovery [11, 

12]. As it turns out, neither the “arylsulfonyl” nor the “tryptamine” portion of these 

compounds is essential for binding. However, their presence is often found to be optimal. 

The arylsulfonyl group can be replaced with a benzyl group, and the tryptamine moiety can 

be truncated to a gramine or even an indole. Even an intact indole nucleus is not required for 

binding. When present, a preferred conformation of the tryptamine aminoethyl side chain 

seems to be one that mimics the ergolines; but there are numerous exceptions. In fact, it is 
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difficult (if not impossible) to envision how the basic amines of some of the compounds can 

interact at a common locus if their indolic ring systems are strictly superimposed. Several 

studies pursued arylsulfonylindoles as possibly representing conformationally constrained 

analogs of Ro 04-6790 (2), Ro 63-0563 (3) and SB-271046 (4) – three of the first 5-HT6 

receptor antagonists reported. This led to the discovery of novel structure-types, and might 

explain a common mode of binding at 5-HT6 serotonin receptors. In reverse fashion, the 

“bicyclic” tryptamines were bisected into monocyclic agents resembling 2–4 that, by and 

large, retained affinity. These were then further developed and exploited to identify new 

high-affinity ligands, and so that structures might be related back to the 

arylsulfonyltryptamines and 2-4. Core structures previously used in 5-HT receptor research 

were exploited, and new core structures were identified. Novel structures were also 

identified by high-throughput screening. The world currently has available an enormous 

number of 5-HT6 receptor ligands. Those interested in QSAR studies certainly have a wealth 

of data to draw upon. What remains is to fully understand the pharmacology of these agents.
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Figure 1. 
A proposed binding mode of MS-245 (5) at the h5-HT6 receptor looking through the 

extracellular side of the helical bundle. Transmembrane helix 5 (TM5), TM6, and TM7 are 

nearest the viewer. MS-245 is rendered as a ball-and-stick model and the heavy atoms of 

side chain residues whose heavy atoms fall within 3 Å of a ligand heavy atom are shown as 

capped sticks. The model was generated as previously reported [16] but represents a 

different view. Note that the terminal amine of MS-245 is within 2.7 Å of Asp106 (D106) 

whereas the sulfonyl oxygen atoms are within hydrogen bond distance to Ser111 (S111) on 
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TM3 and Thr-196 on TM4 (not shown in this view). Greater detail and discussion are 

available [16].
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Table 1

Comparison of h5-HT6 receptor affinities for several N,N-dimethyltryptamines (n = 1) and their corresponding 

gramine analogs (n = 0) [18].

R
Ki, nM (±SEM)a

n = 1 n = 0

H 18 4.4 20 3.1

4-OCH3 21 11 (±1) 24 13 (±2)

5-OCH3 5 2.1 25 87 (±15)

6-OCH3 22 15 (±1) 26 40 (±6)

7-OCH3 23 140 (±15) 27 180 (±40)

a
The assay was conducted (h5-HT6 cDNA transiently expressed in HEK-293 cell) with [3H]LSD as radioligand [16]. SEM not provided where 

data have been previously reported.
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Table 2

Comparison of h5-HT6 receptor affinities for several N1-unsubstituted and N1-benzenesulfonyl-substituted 

analogs of PMDT (8) [18].

Ki, nM (±SEM)a

X Y = H Y = SO2Ph

H 57 2.0 (±1) 61 1.3 (±0.1)

4-OCH3 58 11 (±5) 62 4.6 (±1.1)

5-OCH3 8 20 63 3.8 (±1.6)

6-OCH3 59 65 (±15) 64 10 (±3)

7-OCH3 60 110 (±45) 65 12 (±5)

a
The assay was conducted (h5-HT6 cDNA transiently expressed in HEK-293 cell) with [3H]LSD as radioligand [16]. SEM not provided where 

data have been previously reported.
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