4,290 research outputs found

    Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes

    Get PDF
    The nature and extent of past and current hybridization between cultivated potato and wild relatives in nature is of interest to crop evolutionists, taxonomists, breeders and recently to molecular biologists because of the possibilities of inverse gene flow in the deployment of genetically-modified (GM) crops. This research proves that natural hybridization occurs in areas of potato diversity in the Andes, the possibilities for survival of these new hybrids, and shows a possible way forward in case of GM potatoes should prove advantageous in such areas

    Subnanosecond spectral diffusion measurement using photon correlation

    Get PDF
    Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date

    Bosonic excitations of the AdS4 Reissner-Nordstrom black hole

    Full text link
    We study the long-lived modes of the charge density and energy density correlators in the strongly-coupled, finite density field theory dual to the AdS4 Reissner-Nordstrom black hole. For small momenta q<<\mu, these correlators contain a pole due to sound propagation, as well as a pole due to a long-lived, purely imaginary mode analogous to the \mu=0 hydrodynamic charge diffusion mode. As the temperature is raised in the range T\lesssim\mu, the sound attenuation shows no significant temperature dependence. When T\gtrsim\mu, it quickly approaches the \mu=0 hydrodynamic result where it decreases like 1/T. It does not share any of the temperature-dependent properties of the 'zero sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field theory. For such small momenta, the energy density spectral function is dominated by the sound mode at all temperatures, whereas the charge density spectral function undergoes a crossover from being dominated by the sound mode at low temperatures to being dominated by the diffusion mode when T \mu^2/q. This crossover occurs due to the changing residue at each pole. We also compute the momentum dependence of these spectral functions and their corresponding long-lived poles at fixed, low temperatures T<<\mu.Comment: 33 pages, 21 figures, 6 animation

    On the AC spectrum of one-dimensional random Schroedinger operators with matrix-valued potentials

    Full text link
    We consider discrete one-dimensional random Schroedinger operators with decaying matrix-valued, independent potentials. We show that if the l^2-norm of this potential has finite expectation value with respect to the product measure then almost surely the Schroedinger operator has an interval of purely absolutely continuous (ac) spectrum. We apply this result to Schroedinger operators on a strip. This work provides a new proof and generalizes a result obtained by Delyon, Simon, and Souillard.Comment: (1 figure

    THE ANTIOXIDANT AND ANTIMICROBIAL ACTIVITY OF THE LEAVES EXTRACT OF CLERODENDRUM COLEBROOKIANUM WALP, (FAM: VERBENACEAE)

    Get PDF
    Objective: To investigate the in-vitro antioxidant and antimicrobial potential of Clerodendrum colebrookianum leaves extract.Methods: The leaves of C. colebrookianum were collected from various parts of Aizawl, Mizoram, India. Subsequently, the leaves were extracted with solvents (chloroform, acetone, ethanol and methanol) in a Soxhlet extraction apparatus for 24hr. Further, the extracts were extensively examined for its in-vitro antioxidant (DPPH) and antimicrobial activities. The preliminary phytochemical screening was carried out using standard protocols.Results: The existence of alkaloids, flavonoids, diterpenes, saponins, glycosides, steroids and terpeinoids were revealed in the phytochemical screening. The aqueous and acetone extract had the highest total phenolic content (2.348 mg/ml), when compared to methanol, ethanol and chloroform extracts, which was 0.549 mg/ml, 0.408 mg/ml and 0.407 mg/ml, respectively. The antioxidant activity was more significant for aqueous extract, when compared to other extracts. The antimicrobial activity was more significant for acetone extract showed significant zone of inhibition of 14±0.3, 13±0.3 and 15±0.2 for E. coli, S. marcescens and S. aureus, respectively.Conclusion: The high level of antioxidant and antimicrobial potential of C. colebrookianum leaf extracts encourage its potential use for biomedical applications

    Collective Excitations of Holographic Quantum Liquids in a Magnetic Field

    Full text link
    We use holography to study N=4 supersymmetric SU(Nc) Yang-Mills theory in the large-Nc and large-coupling limits coupled to a number Nf << Nc of (n+1)-dimensional massless supersymmetric hypermultiplets in the Nc representation of SU(Nc), with n=2,3. We introduce a temperature T, a baryon number chemical potential mu, and a baryon number magnetic field B, and work in a regime with mu >> T,\sqrt{B}. We study the collective excitations of these holographic quantum liquids by computing the poles in the retarded Green's function of the baryon number charge density operator and the associated peaks in the spectral function. We focus on the evolution of the collective excitations as we increase the frequency relative to T, i.e. the hydrodynamic/collisionless crossover. We find that for all B, at low frequencies the tallest peak in the spectral function is associated with hydrodynamic charge diffusion. At high frequencies the tallest peak is associated with a sound mode similar to the zero sound mode in the collisionless regime of a Landau Fermi liquid. The sound mode has a gap proportional to B, and as a result for intermediate frequencies and for B sufficiently large compared to T the spectral function is strongly suppressed. We find that the hydrodynamic/collisionless crossover occurs at a frequency that is approximately B-independent.Comment: 45 pages, 8 png and 47 pdf images in 22 figure
    corecore