150 research outputs found
The White Dwarf Cooling Sequence of NGC6397
We present the results of a deep Hubble Space Telescope (HST) exposure of the
nearby globular cluster NGC6397, focussing attention on the cluster's white
dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in
depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using
both artificial star tests and the detectability of background galaxies at
fainter magnitudes, that the cutoff is real and represents the truncation of
the white dwarf luminosity function in this cluster. We perform a detailed
comparison between cooling models and the observed distribution of white dwarfs
in colour and magnitude, taking into account uncertainties in distance,
extinction, white dwarf mass, progenitor lifetimes, binarity and cooling model
uncertainties. After marginalising over these variables, we obtain values for
the cluster distance modulus and age of \mu_0 = 12.02 \pm 0.06 and T_c = 11.47
\pm 0.47Gyr (95% confidence limits). Our inferred distance and white dwarf
initial-final mass relations are in good agreement with other independent
determinations, and the cluster age is consistent with, but more precise than,
prior determinations made using the main sequence turnoff method. In
particular, within the context of the currently accepted \Lambda CDM
cosmological model, this age places the formation of NGC6397 at a redshift z=3,
at a time when the cosmological star formation rate was approaching its peak.Comment: 56 pages, 30 figure
The Space Motion of the Globular Cluster NGC 6397
As a by-product of high-precision, ultra-deep stellar photometry in the
Galactic globular cluster NGC 6397 with the Hubble Space Telescope, we are able
to measure a large population of background galaxies whose images are nearly
point-like. These provide an extragalactic reference frame of unprecedented
accuracy, relative to which we measure the most accurate absolute proper motion
ever determined for a globular cluster. We find mu_alpha = 3.56 +/- 0.04 mas/yr
and mu_delta = -17.34 +/- 0.04 mas/yr. We note that the formal statistical
errors quoted for the proper motion of NGC 6397 do not include possible
unavoidable sources of systematic errors, such as cluster rotation. These are
very unlikely to exceed a few percent. We use this new proper motion to
calculate NGC 6397's UVW space velocity and its orbit around the Milky Way, and
find that the cluster has made frequent passages through the Galactic disk.Comment: 5 pages including 3 figures, accepted for publication in the
Astrophysical Journal Letters. Very minor changes in V2. typos fixe
The Stellar Content of M31's Bulge
In this paper we analyze the stellar populations present in M31 using nine
sets of adjacent HST-NICMOS Camera 1 and 2 fields with galactocentric distances
ranging from 2' to 20'. These infrared observations provide some of the highest
spatial resolution measurements of M31 to date; our data place tight
constraints on the maximum luminosities of stars in the bulge of M31. The tip
of the red giant branch is clearly visible at Mbol ~ -3.8, and the tip of the
asymptotic giant branch (AGB) extends to Mbol ~ -5. This AGB peak luminosity is
significantly fainter than previously claimed; through direct comparisons and
simulations we show that previous measurements were affected by image blending.
We do observe field-to-field variations in the luminosity functions, but
simulations show that these differences can be produced by blending in the
higher surface brightness fields. We conclude that the red giant branch of the
bulge of M31 is not measurably different from that of the Milky Way's bulge. We
also find an unusually high number of bright blueish stars (7.3/arcmin^2) which
appear to be Galactic foreground stars.Comment: 28 pages, 20 figures (posted here with significantly reduced
resolution), accepted to the A
Stellar Proper Motions in the Galactic Bulge from deep HST ACS/WFC Photometry
We present stellar proper motions in the Galactic bulge from the Sagittarius
Window Eclipsing Extrasolar Search (SWEEPS) project using ACS/WFC on HST.
Proper motions are extracted for more than 180,000 objects, with >81,000
measured to accuracy better than 0.3 mas/yr in both coordinates. We report
several results based on these measurements: 1. Kinematic separation of bulge
from disk allows a sample of >15,000 bulge objects to be extracted based on
>6-sigma detections of proper motion, with <0.2% contamination from the disk.
This includes the first detection of a candidate bulge Blue Straggler
population. 2. Armed with a photometric distance modulus on a star by star
basis, and using the large number of stars with high-quality proper motion
measurements to overcome intrinsic scatter, we dissect the kinematic properties
of the bulge as a function of distance along the line of sight. This allows us
to extract the stellar circular speed curve from proper motions alone, which we
compare with the circular speed curve obtained from radial velocities. 3. We
trace the variation of the {l,b} velocity ellipse as a function of depth. 4.
Finally, we use the density-weighted {l,b} proper motion ellipse produced from
the tracer stars to assess the kinematic membership of the sixteen transiting
planet candidates discovered in the Sagittarius Window; the kinematic
distribution of the planet candidates is consistent with that of the disk and
bulge stellar populations.Comment: 71 pages, 30 figures, ApJ Accepte
Deep ACS Imaging in the Globular Cluster NGC 6397: The Cluster Color Magnitude Diagram and Luminosity Function
We present the CMD from deep HST imaging in the globular cluster NGC 6397.
The ACS was used for 126 orbits to image a single field in two colors (F814W,
F606W) 5 arcmin SE of the cluster center. The field observed overlaps that of
archival WFPC2 data from 1994 and 1997 which were used to proper motion (PM)
clean the data. Applying the PM corrections produces a remarkably clean CMD
which reveals a number of features never seen before in a globular cluster CMD.
In our field, the main sequence stars appeared to terminate close to the
location in the CMD of the hydrogen-burning limit predicted by two independent
sets of stellar evolution models. The faintest observed main sequence stars are
about a magnitude fainter than the least luminous metal-poor field halo stars
known, suggesting that the lowest luminosity halo stars still await discovery.
At the bright end the data extend beyond the main sequence turnoff to well up
the giant branch. A populous white dwarf cooling sequence is also seen in the
cluster CMD. The most dramatic features of the cooling sequence are its turn to
the blue at faint magnitudes as well as an apparent truncation near F814W = 28.
The cluster luminosity and mass functions were derived, stretching from the
turn off down to the hydrogen-burning limit. It was well modeled with either a
very flat power-law or a lognormal function. In order to interpret these fits
more fully we compared them with similar functions in the cluster core and with
a full N-body model of NGC 6397 finding satisfactory agreement between the
model predictions and the data. This exercise demonstrates the important role
and the effect that dynamics has played in altering the cluster IMF.Comment: 43 pages including 4 tables and 12 diagrams. Figures 2 and 3 have
been bitmapped. Accepted for publication in the Astronomical Journa
Deep ACS Imaging in the Globular Cluster NGC6397: Dynamical Models
We present N-body models to complement deep imaging of the metal-poor
core-collapsed cluster NGC6397 obtained with the Hubble Space Telescope. All
simulations include stellar and binary evolution in-step with the stellar
dynamics and account for the tidal field of the Galaxy. We focus on the results
of a simulation that began with 100000 objects (stars and binaries), 5%
primordial binaries and Population II metallicity. After 16 Gyr of evolution
the model cluster has about 20% of the stars remaining and has reached
core-collapse. We compare the color-magnitude diagrams of the model at this age
for the central region and an outer region corresponding to the observed field
of NGC6397 (about 2-3 half-light radii from the cluster centre). This
demonstrates that the white dwarf population in the outer region has suffered
little modification from dynamical processes - contamination of the luminosity
function by binaries and white dwarfs with non-standard evolution histories is
minimal and should not significantly affect measurement of the cluster age. We
also show that the binary fraction of main-sequence stars observed in the
NGC6397 field can be taken as representative of the primordial binary fraction
of the cluster. For the mass function of the main-sequence stars we find that
although this has been altered significantly by dynamics over the cluster
lifetime, especially in the central and outer regions, that the position of the
observed field is close to optimal for recovering the initial mass function of
the cluster stars (below the current turn-off mass). More generally we look at
how the mass function changes with radius in a dynamically evolved stellar
cluster and suggest where the best radial position to observe the initial mass
function is for clusters of any age.Comment: 34 pages, 11 figures, submitted to AJ, companion paper to 0708.403
Probing the Faintest Stars in a Globular Star Cluster
NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days
of time on the Hubble Space Telescope, we have constructed the deepest ever
color-magnitude diagram for this cluster. We see a clear truncation in each of
its two major stellar sequences. Faint red main sequence stars run out well
above our observational limit and near to the theoretical prediction for the
lowest mass stars capable of stable hydrogen-burning in their cores. We also
see a truncation in the number counts of faint blue stars, namely white dwarfs.
This reflects the limit to which the bulk of the white dwarfs can cool over the
lifetime of the cluster. There is also a turn towards bluer colors in the least
luminous of these objects. This was predicted for the very coolest white dwarfs
with hydrogen-rich atmospheres as the formation of H2 causes their atmospheres
to become largely opaque to infrared radiation due to collision-induced
absorption.Comment: 12 pages, 4 figures. Full Resolution Figures in Science, 2006, 313,
93
Care-Related Risk Factors for Hospital-Acquired Pressure Ulcers in Elderly Adults with Hip Fracture
To identify care-related factors associated with increased incidence of hospital-acquired pressure ulcers (HAPU
Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells
High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme), the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs) at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions. A CSC population has been confirmed in malignant gliomas by preferential tumor formation from cells directly isolated from patient biopsy specimens. However, direct comparison of multiple tumor cell populations with analysis of the resulting phenotypes of each population within a representative tumor environment has not been clearly described. To directly test the relative tumorigenic potential of CSCs and non-stem tumor cells in the same microenvironment, we interrogated matched tumor populations purified from a primary human tumor transplanted into a xenograft mouse model and monitored competitive in vivo tumor growth studies using serial in vivo intravital microscopy. While CSCs were a small minority of the initial transplanted cancer cell population, the CSCs, not the non-stem tumor cells, drove tumor formation and yielded tumors displaying a cellular hierarchy. In the resulting tumors, a fraction of the initial transplanted CSCs maintained expression of stem cell and proliferation markers, which were significantly higher compared to the non-stem tumor cell population and demonstrated that CSCs generated cellular heterogeneity within the tumor. These head-to-head comparisons between matched CSCs and non-stem tumor cells provide the first functional evidence using live imaging that in the same microenvironment, CSCs more than non-stem tumor cells are responsible for tumor propagation, confirming the functional definition of a CSC
- …