11,017 research outputs found

    High-temperature ''hydrostatic'' extrusion

    Get PDF
    Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion

    Modular instrumentation system for real-time measurements and control on reciprocating engines

    Get PDF
    An instrumentation system was developed for reciprocating engines. Among the parameters measured are the indicated mean effective pressure, or theoretical work per cycle, and the mass fraction burn rate, a measure of the combustion rate in the cylinder. These computations are performed from measured cylinder pressure and crankshaft angle and are available in real time for the experimenter. A 100 or 200 consecutive-cycle sample is analyzed to reduce the effect of cyclic variations in the engine. Data are displayed in bargraph form, and the mean and standard deviation are computed. Other instruments are also described

    Vortices in self-gravitating disks

    Full text link
    Vortices are believed to greatly help the formation of km sized planetesimals by collecting dust particles in their centers. However, vortex dynamics is commonly studied in non-self-gravitating disks. The main goal here is to examine the effects of disk self-gravity on the vortex dynamics via numerical simulations. In the self-gravitating case, when quasi-steady gravitoturbulent state is reached, vortices appear as transient structures undergoing recurring phases of formation, growth to sizes comparable to a local Jeans scale, and eventual shearing and destruction due to gravitational instability. Each phase lasts over 2-3 orbital periods. Vortices and density waves appear to be coupled implying that, in general, one should consider both vortex and density wave modes for a proper understanding of self-gravitating disk dynamics. Our results imply that given such an irregular and rapidly changing, transient character of vortex evolution in self-gravitating disks it may be difficult for such vortices to effectively trap dust particles in their centers that is a necessary process towards planet formation.Comment: to appear in the proceedings of Cool Stars, Stellar Systems and The Sun, 15th Cambridge Workshop, St. Andrews, Scotland, July 21-25, 200

    The role of the energy equation in the fragmentation of protostellar discs during stellar encounters

    Get PDF
    In this paper, we use high-resolution smoothed particle hydrodynamics (SPH) simulations to investigate the response of a marginally stable self-gravitating protostellar disc to a close parabolic encounter with a companion discless star. Our main aim is to test whether close brown dwarfs or massive planets can form out of the fragmentation of such discs. We follow the thermal evolution of the disc by including the effects of heating due to compression and shocks and a simple prescription for cooling and find results that contrast with previous isothermal simulations. In the present case we find that fragmentation is inhibited by the interaction, due to the strong effect of tidal heating, which results in a strong stabilization of the disc. A similar behaviour was also previously observed in other simulations involving discs in binary systems. As in the case of isolated discs, it appears that the condition for fragmentation ultimately depends on the cooling rate.Comment: 9 pages, 10 figures, accepted in MNRA

    Effect of a refuge from persistent male courtship in the Drosophila laboratory environment

    Get PDF
    The Drosophila melanogaster laboratory model has been used extensively in studies of sexual conflict because during the process of courtship and mating, males impose several costs upon females (e.g., reduced fecundity). One important difference between the laboratory and the wild is that females in the laboratory lack a spatial refuge from persistent male courtship. Here, we describe two experiments that examine the potential consequences of a spatial refuge for females. In the first experiment, we examined the influence of a spatial refuge on mating rate of females, and in the second one we examined its influence on females\u27 lifetime fecundity. We found that females mated about 25% less often when a spatial refuge was available, but that the absence of a spatial refuge did not substantially increase the level of male-induced harm to females (i.e., sexual conflict). © The Author 2008. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved

    Characteristics of UGC galaxies detected by IRAS

    Get PDF
    Infrared Astronomy Satellite (IRAS) detection rates at 60 microns were determined for the Uppsala General Catalog of Galaxies (Nilson 1973; the UCG). Late-type spirals, characterized by a normal IR/B ratio of approximately 0.6, are detected to a velocity of approximately 6000 km/s for L sub B = L sub *. Contrary to the situation for IRAS-selected galaxy samples, little evidence was found for a correlation between IR/B and 60/100 microns in this large optically-selected sample. Thus a significant fraction of the IRAS-measured far-infrared flux from normal spirals must originate in the diffuse interstellar medium, heated by the interstellar radiation field. Support was not found for Burstein and Lebofsky's (1986) conclusion that spiral disks are optically thick in the far-infrared

    Semi-Phenomenological Analysis of Dynamics of Nonlinear Excitations in One-Dimensional Electron-Phonon System

    Full text link
    The structure of moving nonlinear excitations in one-dimensional electron-phonon systems is studied semi-phenomenologically by using an effective action in which the width of the nonlinear excitation is treated as a dynamical variable. The effective action can be derived from Su, Schrieffer and Heeger's model or its continuum version proposed by Takayama, Lin-Liu and Maki with an assumption that the nonlinear excitation moves uniformly without any deformation except the change of its width. The form of the action is essentially the same as that discussed by Bishop and coworkers in studying the dynamics of the soliton in polyacetylene, though some details are different. For the moving excitation with a velocity vv, the width is determined by minimizing the effective action. A requirement that there must be a minimum in the action as a function of its width provides a maximum velocity. The velocity dependence of the width and energy can be determined. The motions of a soliton in p olyacetylene and an acoustic polaron in polydiacetylene are studied within this formulation. The obtained results are in good agreement with those of numerical simulations.Comment: 19 pages, LaTeX, 7 Postscript figures, to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.
    corecore