265 research outputs found

    The determination of accurate dipole polarizabilities alpha and gamma for the noble gases

    Get PDF
    The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems

    Connected triple excitations in coupled-cluster calculations of hyperpolarizabilities: Neon

    Get PDF
    We have calculated the second hyperpolarizability gamma of neon using the CCSD(T) method. The accuracy of the CCSD(T) approach has been established by explicit comparison with the single, double and triple excitation coupled-cluster (CCSDT) method using extended basis sets that are known to be adequate for the description of gamma. Our best estimate for gamma(sub 0) of 110 +/- 3 a.u. is in good agreement with other recent theoretical values and with Shelton's recent experimental estimate of 108 +/- 2 a.u. Comparison of the MP2 and CCSD(T) hyperpolarizability values indicates that MP2 gives a very good description of the electron correlation contribution to gamma(sub 0). We have combined MP2 frequency-dependent corrections with the CCSD(T) gamma(sub 0) to yield values of gamma(-2 omega;omega,omega,0) and gamma(exp K)(-omega;omega,0,0)

    Challenges in the use of quantum computing hardware-efficient Ansatze in electronic structure theory

    Full text link
    Advances in quantum computation for electronic structure, and particularly heuristic quantum algorithms, create an ongoing need to characterize the performance and limitations of these methods. Here we discuss some potential pitfalls connected with the use of hardware-efficient Ansatze in variational quantum simulations of electronic structure. We illustrate that hardware-efficient Ansatze may break Hamiltonian symmetries and yield non-differentiable potential energy curves, in addition to the well-known difficulty of optimizing variational parameters. We discuss the interplay between these limitations by carrying out a comparative analysis of hardware-efficient Ansatze versus unitary coupled cluster and full configuration interaction, and of second- and first-quantization strategies to encode fermionic degrees of freedom to qubits. Our analysis should be useful in understanding potential limitations and in identifying possible areas of improvement in hardware-efficient Ansatze.Comment: 16 pages, 9 figures, supplemental information included as an ancillary fil

    Systematic evaluation of high-level visual deficits and lesions in posterior cerebral artery stroke

    Get PDF
    Knowledge about the consequences of stroke on high-level vision comes primarily from single case studies of patients selected based on their behavioural profiles, typically patients with specific stroke syndromes like pure alexia or prosopagnosia. There are, however, no systematic, detailed, large-scale evaluations of the more typical clinical behavioural and lesion profiles of impairments in high-level vision after posterior cerebral artery stroke. We present behavioural and lesion data from the Back of the Brain project, to date the largest (N = 64) and most detailed examination of patients with cortical posterior cerebral artery strokes selected based on lesion location. The aim of the current study was to relate behavioural performance with faces, objects and written words to lesion data through two complementary analyses: (i) a multivariate multiple regression analysis to establish the relationships between lesion volume, lesion laterality and the presence of a bilateral lesion with performance and (ii) a voxel-based correlational methodology analysis to establish whether there are distinct or separate regions within the posterior cerebral artery territory that underpin the visual processing of words, faces and objects. Behaviourally, most patients showed more general deficits in high-level vision (n = 22) or no deficits at all (n = 21). Category-selective deficits were rare (n = 6) and were only found for words. Overall, total lesion volume was most strongly related to performance across all three domains. While behavioural impairments in all domains were observed following unilateral left and right as well as bilateral lesions, the regions most strongly related to performance mainly confirmed the pattern reported in more selective cases. For words, these included a left hemisphere cluster extending from the occipital pole along the fusiform and lingual gyri; for objects, bilateral clusters which overlapped with the word cluster in the left occipital lobe. Face performance mainly correlated with a right hemisphere cluster within the white matter, partly overlapping with the object cluster. While the findings provide partial support for the relative laterality of posterior brain regions supporting reading and face processing, the results also suggest that both hemispheres are involved in the visual processing of faces, words and objects

    Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor

    Full text link
    The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamical electronic structure of the H3_3S+^+ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we combine a qubit reduction technique with variational and diagonalization quantum algorithms, and use a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. To the best of our knowledge, this is the first simulation of a photo-dissociation reaction on a superconducting quantum device, and an important step towards the computational description of photo-dissociation by quantum computing algorithms.Comment: 12 pages, 7 figure

    Genotype-specific Concordance of Chlamydia trachomatis Genital Infection within Heterosexual Partnerships

    Get PDF
    Background Sexual transmission rates of Chlamydia trachomatis (Ct) cannot be measured directly; however, the study of concordance of Ct infection in sexual partnerships (dyads) can help to illuminate factors influencing Ct transmission. Methods Heterosexual men and women with Ct infection and their sex partners were enrolled and partner-specific coital and behavioral data collected for the prior 30 days. Microbiological data included Ct culture, nucleic acid amplification testing (NAAT), quantitative Ct polymerase chain reaction (qPCR), and ompA genotyping. We measured Ct concordance in dyads, and factors (correlates) associated with concordance. Results 121 women and 125 men formed 128 dyads. Overall, 72.9% of male partners of NAAT-positive women and 68.6% of female partners of NAAT-positive men were Ct-infected. Concordance was more common in dyads with culture-positive members (78.6% of male partners, 77% of female partners). Partners of women and men who were NAAT-positive only had lower concordance (33.3%, 46.4%, respectively). Women in concordant dyads had significantly higher median endocervical qPCR values (3,032) compared with CT-infected women in discordant dyads (1,013 IFU DNA equivalents per ml), p<0.01. Among 54 Ct-concordant dyads with ompA genotype data for both members, 96.2% had identical genotypes. Conclusions Higher organism load appears associated with concordance among women. Same-genotype chlamydial concordance was high in sexual partnerships. No behavioral factors were sufficiently discriminating to guide partner services activities. Findings may help model coitus-specific transmission probabilities

    A crowd-sourcing approach for the construction of species-specific cell signaling networks

    Get PDF
    Motivation: Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs. Results: The sbv IMPROVER Species-Specific Network Inference challenge was designed to use the power of the crowds to build two species-specific cell signaling networks given phosphoproteomics, transcriptomics and cytokine data generated from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired reference network with 220 nodes and 501 edges was also provided as prior knowledge from which challenge participants could add or remove edges but not nodes. Such a large network inference challenge not based on synthetic simulations but on real data presented unique difficulties in scoring and interpreting the results. Because any prior knowledge about the networks was already provided to the participants for reference, novel ways for scoring and aggregating the results were developed. Two human and rat consensus networks were obtained by combining all the inferred networks. Further analysis showed that major signaling pathways were conserved between the two species with only isolated components diverging, as in the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred edges was relatively high with the exception of the downstream targets of transcription factors, which seemed more difficult to predict. Contact: [email protected] or [email protected]. Supplementary information: Supplementary data are available at Bioinformatics onlin
    • …
    corecore