396 research outputs found

    Recent results from the PAMELA experiment

    Get PDF
    n/

    First flight data from the PAMELA spectrometer

    Get PDF
    Abstract PAMELA is a satellite-borne experiment designed to study charged particles in the cosmic radiation, optimized in particular for antimatter components search. The experiment is mounted on the Resurs DK1 satellite that was launched on June 15th 2006 from Baikonur cosmodrome and is now collecting data from a semi-polar elliptical orbit around the Earth. The core of the PAMELA apparatus is a magnetic spectrometer, designed to determine precisely the rigidity and the absolute charge of particles crossing the detector. The tracking system is composed of six planes of silicon microstrip detectors dipped in an almost uniform magnetic field generated by a permanent magnet made of an Nd–Fe–B alloy. Some preliminary analysis about the spectrometer's performances, made using data collected since July 2006 till June 2007, are here reviewed

    Status of the PAMELA silicon tracker

    Get PDF
    PAMELA is a composite particle detector which will be launched during the first half of 2006 on board the Russian satellite Resurs DK-1 from Baikonur cosmodrome in Kazakhstan. This experiment is mainly conceived for the study of cosmic-ray antiparticles and for the search for light antinuclei, but other issues related to the cosmic-ray physics will be investigated. In this work the structure of the whole apparatus is shortly discussed with particular attention to the magnetic spectrometer, which has been designed and built in Firenze

    The silicon microstrip detectors of the PAMELA experiment: simulation and test results

    Get PDF
    Abstract The PAMELA detector will fly at the beginning of 2004 on board the Russian satellite Resurs–DK for a 3-year mission designed to study mainly antiparticles in cosmic rays. The core of the apparatus is a magnetic spectrometer in which silicon microstrip detectors are employed. A dedicated simulation study, tuned on beam test data, is presented: it allows to determine the best position finding algorithm for different incidence angles

    Enhancement of hadron–electron discrimination in calorimeters by detection of the neutron component

    Get PDF
    In many physics experiments where calorimeters are employed, the requirement of an accurate energy measurement is accompanied by the requirement of very high hadronelectron discrimination power. Normally the latter requirement is achieved by designing a high-granularity detector with sufficient depth so that the showers can fully develop. This method has many drawbacks ranging from the high number of electronic channels to the high mass of the detector itself. Some of these drawbacks may in fact severely limit the deployment of such a detector in many experiments, most notably in space-based ones. Another method, proposed by our group and currently under investigation, relies on the use of scintillation detectors which are sensitive to the neutron component of the hadron showers. Here a review of the current status will be presented starting with the simulations performed both with GEANT4 and FLUKA. A small prototype detector has been built and has been tested in a high-energy pion/electron beam behind a "shallow" calorimeter. Results are encouraging and indicate that it is possible to enhance the discrimination power of an existing calorimeter by the addition of a small-mass neutron detector, thus paving the way for better performing astroparticle experiments. © 2010 Elsevier B.V. All rights reserved

    The PAMELA silicon tracker

    Get PDF
    Abstract The silicon tracker of the PAMELA apparatus has been assembled and it is ready to fly on-board the Russian satellite Resurs DK for a 3-year mission. The experiment will study, mainly, spectra of particles and antiparticles in cosmic rays. The magnetic spectrometer's primary goal is to precisely measure momenta of charged particles, whose trajectories have been bent by a permanent magnet. The detector is composed of 6 planes of double-sided silicon microstrip detectors, inserted between adjacent modules of a permanent magnet which produces an almost uniform magnetic field inside a rectangular cavity that particles cross. The spatial resolution of the detectors is about 3 ÎĽm for the bending coordinate. The development of such detectors required a complex manufacturing procedure in order to preserve the physical performance in a device suitable for a space mission. In the construction phase data originating from both beam tests and simulation helped to check the detector's characteristics and to optimize the achievable spatial resolution. The development and the final assembling of these detectors are described in this paper

    An innovative approach to compact calorimetry in space, NEUCAL

    Get PDF
    Abstract Neutron emission during the development of hadronic showers can be used to discriminate between electromagnetic and hadronic interacting particles impinging a calorimeter. A neutron detector based on a high efficiency 'active moderator' is presented and its performance is evaluated with the aid of Monte Carlo simulation

    A powerful tracking detector for cosmic rays: the magnetic spectrometer of the PAMELA satellite experiment

    Get PDF
    Abstract The WiZaxd-PAMELA detector will be ready within some months to be installed on board of the Russian satellite Resurs-DK1. The satellite will follow, for at least 3 years, a quasi polar orbit with an inclination of 70.4° with respect to the equatorial plane. The experiment will allow the measurement of the antiproton and positron spectra within a wide momentum range and the search for light anti-nuclei in cosmic rays. The detector subsystems have been tested and the final assembly phase is in progress. In this paper we describe the structure of the PAMELA magnetic spectrometer, its current status and some precautions taken to satisfy the requirements of the mission

    The magnetic spectrometer of the PAMELA satellite experiment

    Get PDF
    In this paper, we describe in detail the design and the construction of the magnetic spectrometer of the PAMELA experiment, that will be launched during 2003 to do a precise measurement of the energy spectra of the antimatter components in cosmic rays. This paper will mainly focus on the detailed description of the tracking system and on the solutions adopted to deal with the technical challenges that are required to build a very precise detector to be used in the hostile space environment
    • …
    corecore