77 research outputs found

    Temperature Effects on the Efficiency of Dickson Charge Pumps for Radio Frequency Energy Harvesting

    Get PDF
    An experimental study is carried out to assess the effect of temperature on the conversion efficiency of ultrahigh-frequency energy harvesters based on diode-capacitor Dickson charge pumps, frequently used in self-energizing circuits, such as in radio frequency identification tags or in wireless sensor nodes. Using off-the-shelf Schottky diodes often adopted for this application, it is shown that the harvester conversion efficiency at 868 MHz is temperature dependent due to the changing rectification ratio, namely the ratio between the forward and the reverse current flowing through the low barrier height Schottky diodes, which both show a positive derivative with T. The experimental study, supported by SPICE simulations, has shown that a temperature variation might be particularly harmful at the lowest incident power regimes, when even a minimal drop in the conversion efficiency might determine the out-of-servicing of a wirelessly energized circuit

    Identification of a Novel p53 Modulator Endowed with Antitumoural and Antibacterial Activity through a Scaffold Repurposing Approach

    Get PDF
    Intracellular pathogens, such as Chlamydia trachomatis, have been recently shown to induce degradation of p53 during infection, thus impairing the protective response of the host cells. Therefore, p53 reactivation by disruption of the p53-MDM2 complex could reduce infection and restore pro-apoptotic effect of p53. Here, we report the identification of a novel MDM2 inhibitor with potential antitumoural and antibacterial activity able to reactivate p53. A virtual screening was performed on an in-house chemical library, previously synthesised for other targets, and led to the identification of a hit compound with a benzo[a]dihydrocarbazole structure, RM37. This compound induced p53 up-regulation in U343MG glioblastoma cells by blocking MDM2-p53 interaction and reduced tumour cell growth. NMR studies confirmed its ability to dissociate the MDM2-p53 complex. Notably, RM37 reduced Chlamydia infection in HeLa cells in a concentration-dependent manner and ameliorated the inflammatory status associated with infection

    Generation and in vivo validation of an IL-12 fusion protein based on a novel anti-human FAP monoclonal antibody

    Full text link
    BACKGROUND In this study, we describe the generation of a fully human monoclonal antibody (named '7NP2') targeting human fibroblast activation protein (FAP), an antigen expressed in the microenvironment of different types of solid neoplasms. METHODS 7NP2 was isolated from a synthetic antibody phage display library and was improved by one round of mutagenesis-based affinity maturation. The tumor recognition properties of the antibody were validated by immunofluorescence procedures performed on cancer biopsies from human patients. A fusion protein consisting of the 7NP2 antibody linked to interleukin (IL)-12 was generated and the anticancer activity of the murine surrogate product (named mIL12-7NP2) was evaluated in mouse models. Furthermore, the safety of the fully human product (named IL12-7NP2) was evaluated in Cynomolgus monkeys. RESULTS Biodistribution analysis in tumor-bearing mice confirmed the ability of the product to selectively localize to solid tumors while sparing healthy organs. Encouraged by these results, therapy studies were conducted in vivo, showing a potent antitumor activity in immunocompetent and immunodeficient mouse models of cancer, both as single agent and in combination with immune checkpoint inhibitors. The fully human product was tolerated when administered to non-human primates. CONCLUSIONS The results obtained in this work provided a rationale for future clinical translation activities using IL12-7NP2

    First detection of X-ray polarization from the accreting neutron star 4U 1820-303

    Get PDF
    This paper reports the first detection of polarization in the X-rays for atoll-source 4U 1820-303, obtained with the Imaging X-ray Polarimetry Explorer (IXPE) at 99.999% confidence level (CL). Simultaneous polarimetric measurements were also performed in the radio with the Australia Telescope Compact Array (ATCA). The IXPE observations of 4U 1820-303 were coordinated with Swift-XRT, NICER, and NuSTAR aiming to obtain an accurate X-ray spectral model covering a broad energy interval. The source shows a significant polarization above 4 keV, with a polarization degree of 2.0(0.5)% and a polarization angle of -55(7) deg in the 4-7 keV energy range, and a polarization degree of 10(2)% and a polarization angle of -67(7) deg in the 7-8 keV energy bin. This polarization also shows a clear energy trend with polarization degree increasing with energy and a hint for a position-angle change of about 90 deg at 96% CL around 4 keV. The spectro-polarimetric fit indicates that the accretion disk is polarized orthogonally to the hard spectral component, which is presumably produced in the boundary/spreading layer. We do not detect linear polarization from the radio counterpart, with a 99.97% upper limit of 50% at 7.25 GHz

    Tracking the X-ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition

    Full text link
    We report on a campaign on the bright black hole X-ray binary Swift J1727.8-1613 centered around five observations by the Imaging X-ray Polarimetry Explorer (IXPE). This is the first time it has been possible to trace the evolution of the X-ray polarization of a black hole X-ray binary across a hard to soft state transition. The 2--8 keV polarization degree slowly decreased from \sim4\% to \sim3\% across the five observations, but remained in the North-South direction throughout. Using the Australia Telescope Compact Array (ATCA), we measure the intrinsic 7.25 GHz radio polarization to align in the same direction. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with resolved jet images), this implies that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (\gtrsim10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR (NICER) are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state differs from the common trend seen for other sources, implying that Swift J1727.8-1613 is a member of a hitherto under-sampled sub-population.Comment: Submitted to ApJ. 20 pages, 8 figure

    Simulating Signal Aberration and Ranging Error for Ultrasonic Indoor Positioning

    No full text
    Increasing efforts toward the development of positioning techniques testify the growing interest for indoor position-based applications and services. Many applications require accurate indoor positioning or tracking of people and assets, and some market sectors are starting a rapid growth of products based on these technologies. Ultrasonic systems have already been demonstrating their effectiveness and to possess the desired positioning accuracy and refresh rates. In this work, it is shown that a typical signal used in ultrasonic positioning systems to estimate the range between the target and reference points—namely, the linear chirp—due to the effects of acoustic diffraction, in some cases, undergoes a shape aberration, depending on the shape and size of the transducer and on the angle under which the transducer is seen by the receiver. In the presence of such signal shape aberrations, even one of the most robust ranging techniques, which is based on cross-correlation, provides results affected by a much greater error than expected. Numerical simulations are carried out for a typical ultrasonic chirp, ultrasonic emitter, and range technique based on cross-correlation and for a typical office room, obtained using the academic acoustic simulation software Field II. Spatial distributions of the ranging error are provided, clearly showing the favorable low error regions. The work demonstrates that particular attention must be paid to the design of the acoustic section of the ultrasonic positioning systems, considering both the shape and size of the ultrasonic emitters and the shape of the acoustic signal used

    3D Localization and Tracking of Objects Using Miniature Microphones

    No full text

    Advanced Sensors and Systems Technologies for Indoor Positioning

    No full text
    There is an increasing interest about indoor positioning, which is an emerging technology with a wide range of applications [...
    corecore