6,163 research outputs found

    Object-Free Definition of Categories

    Get PDF
    Category theory was formalized in Mizar with two different approaches [7], [18] that correspond to those most commonly used [16], [5]. Since there is a one-to-one correspondence between objects and identity morphisms, some authors have used an approach that does not refer to objects as elements of the theory, and are usually indicated as object-free category [1] or as arrowsonly category [16]. In this article is proposed a new definition of an object-free category, introducing the two properties: left composable and right composable, and a simplification of the notation through a symbol, a binary relation between morphisms, that indicates whether the composition is defined. In the final part we define two functions that allow to switch from the two definitions, with and without objects, and it is shown that their composition produces isomorphic categories.Via del Pero 102 54038 Montignoso ItalyJiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Dover Publication, New York, 2009.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Czesław Bylinski. Introduction to categories and functors. Formalized Mathematics, 1 (2):409-420, 1990.Czesław Bylinski. Subcategories and products of categories. Formalized Mathematics, 1 (4):725-732, 1990.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.Andrzej Trybulec. Isomorphisms of categories. Formalized Mathematics, 2(5):629-634, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Categorical Pullbacks

    Get PDF
    The main purpose of this article is to introduce the categorical concept of pullback in Mizar. In the first part of this article we redefine homsets, monomorphisms, epimorpshisms and isomorphisms [7] within a free-object category [1] and it is shown there that ordinal numbers can be considered as categories. Then the pullback is introduced in terms of its universal property and the Pullback Lemma is formalized [15]. In the last part of the article we formalize the pullback of functors [14] and it is also shown that it is not possible to write an equivalent definition in the context of the previous Mizar formalization of category theory [8].Via del Pero 102, 54038 Montignoso, ItalyJiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Dover Publication, New York, 2009.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129, 1990.Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1 (2):265–267, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1 (2):409–420, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Reprints in Theory and Applications of Categories, 5:1–121, 2004.Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193–205, 2013. doi:10.2478/forma-2013-0021.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990

    Exponential Objects

    Get PDF
    In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].Via del Pero 102, 54038 Montignoso, ItalyJiri Adamek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories: The Joy of Cats. Dover Publication, New York, 2009.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.Francis Borceaux. Handbook of Categorical Algebra I. Basic Category Theory, volume 50 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1 (2):409–420, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365–370, 1991.F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories. Reprints in Theory and Applications of Categories, 5:1–121, 2004.Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.Marco Riccardi. Object-free definition of categories. Formalized Mathematics, 21(3): 193–205, 2013. doi:10.2478/forma-2013-0021. [Crossref]Marco Riccardi. Categorical pullbacks. Formalized Mathematics, 23(1):1–14, 2015. doi:10.2478/forma-2015-0001. [Crossref]Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.Andrzej Trybulec. Isomorphisms of categories. Formalized Mathematics, 2(5):629–634, 1991.Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics, 2(4):467–474, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990

    The Borsuk-Ulam Theorem

    Get PDF
    The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32-33].This work has been supported by the Polish Ministry of Science and Higher Education project “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519 385136)Korniłowicz Artur - Institute of Informatics, University of Białystok, Sosnowa 64, 15-887 Białystok, PolandRiccardi Marco - Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.Adam Grabowski. On the subcontinua of a real line. Formalized Mathematics, 11(3):313-322, 2003.Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57-62, 1998.Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. Formalized Mathematics, 11(4):381-383, 2003.Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.Artur Korniłowicz. On the continuity of some functions. Formalized Mathematics, 18(3):175-183, 2010, doi: 10.2478/v10037-010-0020-z.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in EnT. Formalized Mathematics, 12(3):301-306, 2004.Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004.Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.Adam Naumowicz and Grzegorz Bancerek. Homeomorphisms of Jordan curves. Formalized Mathematics, 13(4):477-480, 2005.Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Marco Riccardi and Artur Korniłowicz. Fundamental group of n-sphere for n ≥ 2. Formalized Mathematics, 20(2):97-104, 2012, doi: 10.2478/v10037-012-0013-1.Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998

    Fundamental Group of n-sphere for n ≥ 2

    Get PDF
    Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17].This work has been supported by the Polish Ministry of Science and Higher Education project “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519 385136).Riccardi Marco - Via del Pero 102, 54038 Montignoso, ItalyKorniłowicz Artur - Institute of Informatics, University of Białystok, Sosnowa 64, 15-887 Białystok, PolandGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. Formalized Mathematics, 12(3):251-260, 2004.Artur Korniłowicz. The fundamental group of convex subspaces of EnT. Formalized Mathematics, 12(3):295-299, 2004.Artur Korniłowicz. On the isomorphism of fundamental groups. Formalized Mathematics, 12(3):391-396, 2004.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in EnT. Formalized Mathematics, 12(3):301-306, 2004.Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41-45, 2012, doi: 10.2478/v10037-012-0006-0.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Optical calibration of large format adaptive mirrors

    Full text link
    Adaptive (or deformable) mirrors are widely used as wavefront correctors in adaptive optics systems. The optical calibration of an adaptive mirror is a fundamental step during its life-cycle: the process is in facts required to compute a set of known commands to operate the adaptive optics system, to compensate alignment and non common-path aberrations, to run chopped or field-stabilized acquisitions. In this work we present the sequence of operations for the optical calibration of adaptive mirrors, with a specific focus on large aperture systems such as the adaptive secondaries. Such systems will be one of the core components of the extremely large telescopes. Beyond presenting the optical procedures, we discuss in detail the actors, their functional requirements and the mutual interactions. A specific emphasys is put on automation, through a clear identification of inputs, outputs and quality indicators for each step: due to a high degrees-of-freedom count (thousands of actuators), an automated approach is preferable to constraint the cost and schedule. In the end we present some algorithms for the evaluation of the measurement noise; this point is particularly important since the calibration setup is typically a large facility in an industrial environment, where the noise level may be a major show-stopper.Comment: 50 pages. Final report released for the project "Development and test of a new CGH-based technique with automated calibration for future large format Adaptive-Optics Mirrors", funded under the INAF -TecnoPRIN 2010. Published by INAF - Osservatorio Astrofisico di Arcetri. ISBN: 978-88-908876-1-

    11th AIIA 2017 Conference Biosystems Engineering Addressing the Human Challenges of the 21st century Proceedings

    Get PDF

    Solution of Cubic and Quartic Equations

    Get PDF
    In this article, the principal n-th root of a complex number is defined, the Vieta’s formulas for polynomial equations of degree 2, 3 and 4 are formalized. The solution of quadratic equations, the Cardan’s solution of cubic equations and the Descartes-Euler solution of quartic equations in terms of their complex coefficients are also presented [5].Casella Postale 49, 54038 Montignoso, ItalyGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Yuzhong Ding and Xiquan Liang. Solving roots of polynomial equation of degree 2 and 3 with complex coefficients. Formalized Mathematics, 12(2):85-92, 2004.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.G.A. Korn and T.M. Korn. Mathematical Handbook for Scientists and Engineers. Dover Publication, New York, 2000.Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9(3):455-460, 2001.Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507-509, 1991.Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998

    Nanoparticle-based receptors mimic protein-ligand recognition

    Get PDF
    The self-assembly of a monolayer of ligands on the surface of noble metal nanoparticles dictates the fundamental nanoparticle\u2019s behavior and its functionality. In this combined computational\u2013experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which may explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs
    • …
    corecore