120 research outputs found

    The differential effects of ecstasy/polydrug use on executive components: shifting, inhibition, updating and access to semantic memory

    Get PDF
    Rationale/Objectives Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. Methods In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). Results MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. Conclusions The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    Decision making as a predictor of first ecstasy use: a prospective study

    Get PDF
    Ecstasy (+/- 3,4-methylenedioxymethamphetamine) is a widely used recreational drug that may damage the serotonin system and may entail neuropsychological dysfunctions. Few studies investigated predictors for ecstasy use. Self-reported impulsivity does not predict the initiation of ecstasy use; the question is if neuropsychological indicators of impulsivity can predict first ecstasy use. This study tested the hypothesis that a neuropsychological indicator of impulsivity predicts initiation of ecstasy use. Decision-making strategy and decision-making reaction times were examined with the Iowa Gambling Task in 149 ecstasy-naive subjects. The performance of 59 subjects who initiated ecstasy use during a mean follow-up period of 18 months (range, 11-26) was compared with the performance of 90 subjects that remained ecstasy-naive. Significant differences in decision-making strategy between female future ecstasy users and female persistent ecstasy-naive subjects were found. In addition, the gap between decision-making reaction time after advantageous choices and reaction time after disadvantageous choices was smaller in future ecstasy users than in persistent ecstasy-naives. Decision-making strategy on a gambling task was predictive for future use of ecstasy in female subjects. Differences in decision-making time between future ecstasy users and persistent ecstasy-naives may point to lower punishment sensitivity or higher impulsivity in future ecstasy users. Because differences were small, the clinical relevance is questionabl

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Significance Communicating in ways that motivate engagement in social distancing remains a critical global public health priority during the COVID-19 pandemic. This study tested motivational qualities of messages about social distancing (those that promoted choice and agency vs. those that were forceful and shaming) in 25,718 people in 89 countries. The autonomy-supportive message decreased feelings of defying social distancing recommendations relative to the controlling message, and the controlling message increased controlled motivation, a less effective form of motivation, relative to no message. Message type did not impact intentions to socially distance, but people’s existing motivations were related to intentions. Findings were generalizable across a geographically diverse sample and may inform public health communication strategies in this and future global health emergencies. Abstract Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Ecstasy eases Parkinson's in mice

    No full text

    Pharmacokinetic profile of single and repeated oral doses of MDMA in squirrel monkeys: Relationship to lasting effects on brain serotonin neurons

    No full text
    A large body of data indicates that (7)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can damage brain serotonin neurons in animals. However, the relevance of these preclinical data to humans is uncertain, because doses and routes of administration used in animals have generally differed from those used by humans. Here, we examined the pharmacokinetic profile of MDMA in squirrel monkeys after different routes of administration, and explored the relationship between acute plasma MDMA concentrations after repeated oral dosing and subsequent brain serotonin deficits. Oral MDMA administration engendered a plasma profile of MDMA in squirrel monkeys resembling that seen in humans, although the half-life of MDMA in monkeys is shorter (3 vs 6–9 h). MDMA was biotransformed into MDA, and the plasma ratio of MDA to MDMA was 3–5/100, similar to that in humans. MDMA accumulation in squirrel monkeys was nonlinear, and plasma levels were highly correlated with regional brain serotonin deficits observed 2 weeks later. The present results indicate that plasma concentrations of MDMA shown here to produce lasting serotonergic deficits in squirrel monkeys overlap those reported by other laboratories in some recreational ‘ecstasy’ consumers, and are two to three times higher than those found in humans administered a single 100–150 mg dose of MDMA in a controlled setting. Additional studies are needed on the relative sensitivity of brain serotonin neurons to MDMA toxicity in humans and non-human primates, the pharmacokinetic parameter(s) of MDMA most closely linked to the neurotoxic process, and metabolites other than MDA that may play a role.Annis Mechan, Jie Yuan, George Hatzidimitriou, Rodney J Irvine, Una D McCann and George A Ricaurt
    corecore