30 research outputs found

    TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart

    Get PDF
    Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases

    RECK suppresses interleukin-17/TRAF3IP2-mediated MMP-13 activation and human aortic smooth muscle cell migration and proliferation

    Get PDF
    Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases

    Insulin regulates neurovascular coupling through astrocytes

    Get PDF
    Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IRdeficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1¿ and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.We are thankful to M.Garcia and R. Cañadas for technical support. This work was funded by Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) (Instituto de Salud CarlosIII, Spain) to I.T.A., A.G., and T.I.; an Inter-CIBER project (PIE14/00061) to I.T.A.that forms part of the projects PID2019-104376RB-I00 (I.T.A.) and RTI2018-094887-B-I00 (M.N.) funded by MCIN/AEI/10.13039/501100011033; a grant from Junta de Andalucia Consejería de Economía y Conocimiento (P18-RT-2233 to A.G.) cofinanced by Programa Operativo FEDER 2014–2020; a grant from Instituto de Salud Carlos III Spain (cofinanced by FEDER funds from the European Union; PI21/00915 to A.G.); Grant PID2020-115218RB-I00 to T.I. funded by Ministerio de Ciencia e Innovación/Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033); and a grant from Comunidad de Madrid through the European Social Fund (ESF)–financed programme Neurometabolismo-Comunidad de Madrid (NEUROMETAB-CM) (B2017/BMD-3700 to I.T.A.and T.I.). M.N. was also supported by the Spanish Ministry of Science and Innovation (Ramón y Cajal RYC-2016-20414). J.P.-U. was contracted by CIBERNED

    Long-term treatment with fluoxetine induces desensitization of 5-HT 4 receptor-dependent signalling and functionality in rat brain

    Get PDF
    El pdf del artículo es la versión pre-print.The mode of action of antidepressant drugs may be related to mechanisms of monoamines receptor adaptation, including serotonin 5-HT4 receptor subtypes. Here we investigated the effects of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine for 21 days (5 and 10 mg/kg, p.o., once daily) on the sensitivity of 5-HT4 receptors by using receptor autoradiography, adenylate cyclase assays and extracellular recording techniques in rat brain. Fluoxetine treatment decreased the density of 5-HT 4 receptor binding in the CA1 field of hippocampus as well as in several areas of the striatum over the doses of 5-10 mg/kg. In a similar way, we found a significant lower response to zacopride-stimulated adenylate cyclase activity in the fluoxetine 10 mg/kg/day treated group. Furthermore, post-synaptic 5-HT4 receptor activity in hippocampus-measured as the excitatory action of zacopride in the pyramidal cells of CA1 evoked by Schaffer collateral stimulation was attenuated in rats treated with both doses of fluoxetine. Taken together, these results support the concept that a net decrease in the signalization pathway of 5-HT4 receptors occurs after chronic selective serotonin reuptake inhibitor treatment: this effect may underlie the therapeutic efficacy of these drugs. © 2009 International Society for Neurochemistry.This research was supported by Ministry of Science, SAF04-00941, SAF07-61862, Fundación Alicia Koplowitz, Fundación de Investigación Médica Mutua Madrileña, Instituto de Salud Carlos III and University of Cantabria-FAES research contract. RV is in receipt of a fellowship from University of Cantabria - FAES .Peer Reviewe

    A Method for 2-Photon Imaging of Blood Flow in the Neocortex through a Cranial Window

    No full text
    The ability to image the cerebral vasculature (from large vessels to capillaries) and record blood flow dynamics in the intact brain of living rodents is a powerful technique. Using in vivo 2-photon microscopy through a cranial window it is possible to image fluorescent dyes injected intravenously. This permits one to image the cortical vasculature and also to obtain measurements of blood flow. This technique was originally developed by David Kleinfeld and Winfried Denk. The method can be used to study blood flow dynamics during or after cerebral ischemia, in neurodegenerative disorders, in brain tumors, or in normal brain physiology. For example, it has been used to study how stroke causes shifts in blood flow direction and changes in red blood cell velocity or flux in and around the infarct. Here we demonstrate how to use 2-photon microscopy to image blood flow dynamics in the neocortex of living mice using fluorescent dyes injected into the tail vein

    Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    No full text
    The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L) 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006). In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013). In the adult mouse somatosensory cortex (SCx), the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis) and cortical outputs (optogenetics) within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm), we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008), we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011). Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information

    Autoradiographic characterisation of [35S]GTPgammaS binding stimulation mediated by 5-HT1B receptor in postmortem human brain

    No full text
    Publisher full-text version of the paper available at Neuropharmacology journal site: http://www.sciencedirect.com/science/journal/00283908G-protein activation mediated by 5-HT1B receptors was studied in human brain by [35S]GTPγS autoradiographic methods. 5-HT (10 μM) increased [35S]GTPγS binding in caudate–putamen nucleus, globus pallidus, dentate gyrus, CA1, entorhinal cortex and substantia nigra. In basal ganglia and midbrain, this effect was blocked by GR 127935 (5-HT1B/1D antagonist). In contrast, WAY 100635 (selective 5-HT1A antagonist) reversed the effect of 5-HT in hippocampus and entorhinal cortex. Therefore, a detailed pharmacological study was carried out in basal ganglia and substantia nigra using 5-HT and the 5-HT1B/1D agonists GTI and CP 93129. In these areas, these agonists stimulated [35S]GTPγS binding in a concentration-dependent manner, with no significant differences in the potency for a given structure. Furthermore, GTI was more potent in the putamen than in globus pallidus. In caudate–putamen, the three agonists showed the same efficacy, while in globus pallidus and substantia nigra the efficacy of 5-HT was higher than GTI and CP 93129. The selective 5-HT1B antagonist SB-224289 inhibited GTI- and CP 93129-stimulated [35S]GTPγS binding in basal ganglia and substantia nigra, while coincubation with BRL 15572 (selective 5-HT1D antagonist) did not result in any significant change. Here we report the anatomical pattern of distribution of 5-HT1B-dependent functionality by using specific pharmacological tools in human brain sections.This work was supported by CICYT BFI 2001/0592 and FEDER 1FD97-1597.Peer reviewe

    A role for nuclear β-catenin in SNRI antidepressant-induced hippocampal cell proliferation

    No full text
    Increasing evidences have been accumulated during recent years suggesting a role for antidepressant drugs (ADs) as hippocampal neurogenesis enhancers, but the information about the transductional mechanisms involved in this response is very limited. We have studied in the adult rat hippocampus the effects of chronic treatment with the dual reuptake inhibitor (SNRI) venlafaxine on both cellular proliferation rate and expression of key effectors of several signaling pathways. Increased cell proliferation (BrdU incorporation) in subgranular zone (SGZ) was achieved after chronic treatment with a high dose (40 mg/kg/day) of venlafaxine. However, significant increases in the immunoreactivity of hippocampal β-catenin in SGZ were already detected after administration of a lower dose of the drug (10 mg/kg/day). Western blot and immunoelectron microscopy studies demonstrated an increased presence of β-catenin at the nuclear level. An increase in cytosolic AKT levels was also observed in venlafaxine-treated animals. These results suggest that the hippocampal proliferative effect of chronic venlafaxine, only evident when both serotonin (5-HT) and noradrenaline/norepinephrine (NE) reuptake systems are inhibited, requires a strong activation of intracellular signaling through Wnt (β-catenin translocation) and AKT/PKB pathways. This activation would probably result in an increase of the expression of cell cycle regulator genes. Furthermore pERK2/ERK2 rate was also increased in the hippocampus of AD-treated animals, while no differences in the levels of CREB and p-CREB were observed. These results illustrate the complexity of the intracellular events underlying the neurogenetic responses of ADs. They also support the relevance of such effects for the therapeutic effects of these drugs. © 2008 Elsevier Ltd. All rights reserved.R.M. received a postdoctoral fellowship from Fundación Pública “Marqués de Valdecilla”-IFIMAV. This work has been supported by CICYT (BFI01-0592 and SAF04-00941), IFIMAV (API 05/23), Alicia Koplowitz Foundation, the Spanish Ministry of Health, Instituto de Salud Carlos III, and FAES FARMA, S.A.-Universidad de Cantabria contract.Peer Reviewe
    corecore