8,296 research outputs found

    A Bayesian inference approach for determining player abilities in football

    Full text link
    We consider the task of determining a football player's ability for a given event type, for example, scoring a goal. We propose an interpretable Bayesian model which is fit using variational inference methods. We implement a Poisson model to capture occurrences of event types, from which we infer player abilities. Our approach also allows the visualisation of differences between players, for a specific ability, through the marginal posterior variational densities. We then use these inferred player abilities to extend the Bayesian hierarchical model of Baio and Blangiardo (2010) which captures a team's scoring rate (the rate at which they score goals). We apply the resulting scheme to the English Premier League, capturing player abilities over the 2013/2014 season, before using output from the hierarchical model to predict whether over or under 2.5 goals will be scored in a given game in the 2014/2015 season. This validates our model as a way of providing insights into team formation and the individual success of sports teams.Comment: 31 pages, 14 figure

    Electron - positron cascades in multiple-laser optical traps

    Get PDF
    We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly polarised laser pulses and account for multiple laser interaction. The estimate is verified by a comprehensive numerical study of four-laser QED cascades across a range of different laser intensities with QED PIC module of OSIRIS. We show that by using four linearly polarised 30 fs laser pulses, one can convert more than 50 % of the total energy to gamma-rays already at laser intensity I1024 W/cm2I\simeq10^{24}\ \mathrm{W/cm^2}. In this configuration, the laser conversion efficiency is higher compared with the case with two colliding lasers

    Shock formation in electron-ion plasmas: mechanism and timing

    Get PDF
    We analyse the full shock formation process in electron-ion plasmas in theory and simulations. It is accepted that electromagnetic shocks in initially unmagnetised relativistic plasmas are triggered by the filamentation instability. However, the transition from the first unstable phase to the quasi-steady shock is still missing. We derive a theoretical model for the shock formation time, taking into account the filament merging in the non-linear phase of the filamentation instability. This process is much slower than in electron-positron pair shocks, so that the shock formation is longer by a factor proportional to sqrt(m_i/m_e) ln(m_i/m_e)

    Capital Flows and Destabilizing Policy in Latin America

    Get PDF
    Motivated by the excessive macroeconomic volatility experienced in Latin America, we examine the possible contribution of monetary and fiscal policies to this outcome. In contrast with previous literature, we consider the possible simultaneity between policy and GDP growth by using GMM VAR econometric techniques. Additionally, we explore the direct impact international capital inflows have on these policies. Our evidence suggests that for the group of countries we consider, most practice destabilizing fiscal and monetary policy, and capital inflow consistently influences policy in a pro-cyclical direction.Fiscal and Monetary Policies, Capital Flows, Latin America

    Classical Radiation Reaction in Particle-In-Cell Simulations

    Get PDF
    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementation.Comment: 12 pages, 8 figure

    Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching

    Get PDF
    This paper combines two popular econometric tools, the dynamic factor model and the Markov-Switching model, to consider three segments of the financial system- the stock market, debt, and money- and their contribution to US business cycles over the past four decades. The dynamic factor model identifies a composite factor index for each financial segment, and using Markov-switching models by Hamilton (1989) and Filardo (1994), this paper then estimates the effect of each segment index on business cycle behaviour. This reexamination of the finance-business cycle link provides results that prove strongest for the effect of stock market movements on business cycles.

    Full-scale ab initio 3D PIC simulations of an all-optical radiation reaction configuration at 1021W/cm210^{21}\mathrm{W/cm^2}

    Get PDF
    Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all optical configuration through the collision of a \sim1 GeV laser wakefield accelerated (LWFA) electron bunch with a counter propagating laser pulse. In this configuration radiation reaction significantly reduces the energy of the particle bunch, thus providing clear experimental signatures for the process with currently available lasers. We also show that the transition between classical and quantum radiation reaction could be investigated in the same configuration with laser intensities of 1024W/cm210^{24}\mathrm{W/cm^2}

    Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cascao, I., Lammers, M. O., Prieto, R., Santos, R. S., & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Scientific Reports, 10(1), (2020): 3610, doi:10.1038/s41598-020-60441-4.Several seamounts have been identified as hotspots of marine life in the Azores, acting as feeding stations for top predators, including cetaceans. Passive acoustic monitoring is an efficient tool to study temporal variations in the occurrence and behaviour of vocalizing cetacean species. We deployed bottom-moored Ecological Acoustic Recorders (EARs) to investigate the temporal patterns in acoustic presence and foraging activity of oceanic dolphins at two seamounts (Condor and Gigante) in the Azores. Data were collected in March–May 2008 and April 2010–February 2011. Dolphins were present year round and nearly every day at both seamounts. Foraging signals (buzzes and bray calls) were recorded in >87% of the days dolphin were present. There was a strong diel pattern in dolphin acoustic occurrence and behaviour, with higher detections of foraging and echolocation vocalizations during the night and of social signals during daylight hours. Acoustic data demonstrate that small dolphins consistently use Condor and Gigante seamounts to forage at night. These results suggest that these seamounts likely are important feeding areas for dolphins. This study contributes to a better understanding of the feeding ecology of oceanic dolphins and provides new insights into the role of seamount habitats for top predators.This research was supported by the Fundação para a Ciência e a Tecnologia (FCT), Azores 2020 Operational Programme and the Fundo Regional da Ciência e Tecnologia (FRCT), through research projects TRACE (PTDC/MAR/74071/2006), MAPCET (M2.1.2/F/012/2011), FCT-Exploratory (IF/00943/2013/CP1199/CT0001), WATCH IT (Acores-01-0145-FEDER-000057) and MISTIC SEAS II (GA11.0661/2017/750679/SUB/ENV.C2), co-funded by FEDER, COMPETE, QREN, POPH, European Social Fund (ESF), the Portuguese Ministry for Science and Education, and EU-DG/ENV. The Azores 2020 Operational Programme is funded by the community structural funds ERDF and ESF. Funds were also provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. MAS was supported through a FCT Investigator contract funded by POPH, QREN, ESF and the Portuguese Ministry for Science and Education (IF/00943/2013). IC was supported by a FCT doctoral grant (SFRH/BD/41192/2007) and RP by a FCT postdoctoral grant (SFRH/BPD/108007/2015). We thank the field and crew teams for assisting with the many deployments and recoveries of the EARs. Special thanks to Norberto Serpa for helping with mooring design, Ken Sexton and Michael Richlen for their roles in manufacturing the EARs, Sergio Gomes for building the battery packs, and Lisa Munger for adapting Triton for EAR data analysis

    Particle Merging Algorithm for PIC Codes

    Get PDF
    Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative algorithm based on the coalescence of N massive or massless particles, considered to be close enough in phase space, into two new macro-particles. The local conservation of charge, momentum and energy are ensured by the resolution of a system of scalar equations. Various simulation comparisons have been carried out with and without the merging algorithm, from classical plasma physics problems to extreme scenarios where quantum electrodynamics is taken into account, showing in addition to the conservation of local quantities, the good reproducibility of the particle distributions. In case where the number of particles ought to increase exponentially in the simulation box, the dynamical merging permits a considerable speedup, and significant memory savings that otherwise would make the simulations impossible to perform
    corecore