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ABSTRACT

We analyze the full shock formation process in electron–ion plasmas in theory and simulations. It is accepted that
electromagnetic shocks in initially unmagnetized relativistic plasmas are triggered by filamentation instability.
However, the transition from the first unstable phase to the quasi-steady shock is still missing. We derive a
theoretical model for the shock formation time, taking into account filament merging in the nonlinear phase of the
filamentation instability. This process is much slower than in electron–positron pair shocks, and so the shock
formation is longer by a factor proportional to m m m mln( )i e i e .
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1. INTRODUCTION

Collisionless shocks are ubiquitous in astrophysical environ-
ments such as gamma-ray bursts, active galactic nuclei, or
pulsar wind nebulae. They are especially important in the
context of cosmic ray acceleration. Once the shock is in a
quasi-steady state, the jump conditions can be determined from
the conservation of mass, energy, and momentum in a fluid
model (Blandford & McKee 1976). The density jump from
upstream to downstream of a relativistic strong shock is given
in two dimensions by ≈n n 32 1 . Plasma instabilities are the
mediators of such collisionless shocks (Sagdeev 1966), but it is
still not known precisely how the transition from the initial
plasma turbulence to the final quasi-steady state of the shock
happens.

In a symmetric counterstreaming flow of charged particles,
plasma instabilities develop causing an isotropization of the
particle momenta and initiating the deceleration of the plasma
flows. In relativistic, cold, and initially unmagnetized plasmas,
electromagnetic current filamentation modes which inhabit a
strong perpendicular component are dominant (Fried 1959;
Weibel 1959). The energy is transferred from an initial
longitudinal streaming into perpendicular directions. The
particle forward motion is slowed down and a collisionless
shock begins to form with a density ratio of >n n 22 1 .

Since nonlinear processes are involved, particle-in-cell (PIC)
simulations are an excellent tool to investigate the shock
formation process (Hededal et al. 2005; Medvedev et al. 2005;
Spitkovsky 2008; Martins et al. 2009; Nishikawa et al. 2011;
Fiúza et al. 2012; Sironi et al. 2013; Stockem et al. 2014;
Huntington et al. 2015). In a previous study, we identified the
shock formation time of electron–positron pair shocks as twice
the saturation time of the magnetic field amplification due to
filamentation instability, τ τ= 2f e s e, , (Bret et al. 2013, 2014).
Surprisingly, electron–ion shocks do not show the same feature
as one would expect from the rapid relativistic mass increase of
the electrons. Our analysis shows a shock formation time of
τ τ≈ m m3f i i e f e, , . However, we observed a similarity
between both scenarios: the steady-state shock is formed when
the first ions start to recirculate. The nonlinear phase is faster in
pair shocks and no additional time is necessary for the merging

of magnetic flux tubes, and so the recirculation process starts
earlier. Consequently, particles are mainly scattered in the
turbulence rather than performing a full gyro rotation, which is
why the isotropization process is less effective. We present a
detailed theory for shock formation in electron–ion plasmas
and compare it to state-of-the-art PIC simulations.

2. SHOCK FORMATION TIME

We consider a simple scenario for shock formation with the
plasma initially being unmagnetized and symmetric counter-
streaming relativistic beams of electrons and ions of mass ratio

⩾m mi e and Lorentz factor γ0. We refer to pair shocks of
electrons and positrons when =m mi e. The beams are initially
cold, characterized by the temperature parameter

γ=μ mc k TB0
2 , where the mass m and temperature T refer

to the respective species. Such scenarios are a stimulating
environment for the current filamentation instability
(Fried 1959) to occur. The growth rate of the cold current
filamentation instability, for electron beams as well as for ion
beams, is given by δ γ β ω= 2 p0 0 , where β = v c0 0 denotes
the normalized fluid velocity of the beam and the plasma
frequency is given by ω = πn e m4p 0

2 with the initial
uniform beam density n0 (Bret et al. 2010).
Let us start by describing the mechanisms at work that lead

to shock formation before we turn to the analytical evaluation
of the shock formation time. As has already been highlighted
by various authors (Lyubarsky & Eichler 2006; Shaisultanov
et al. 2012; Davis et al. 2013), the electron Weibel instability is
first triggered when the two plasmas start overlapping. By the
time it saturates, the instability has generated filaments of the
size of the electron Larmor radius in the field at saturation (Bret
et al. 2013). By the time the ion Weibel instability starts to
grow, an unstable wavelength has already been seeded. This
wavelength corresponds precisely to that which resulted from
the merging of the filaments associated with the electron
Weibel instability with a typical length scale of ωc pe.
Consequently, by the time the ion Weibel instability saturates,
the field is near equipartition with the ions but the filaments are
still the size of the electronic Larmor radius, not the ion radius,
since the instability of the ions was initially seeded at these
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length scales. Such filaments are too small to efficiently deflect
the ion flow and need to merge in order to reach the required
size (Milosavljevic et al. 2006; Chang et al. 2008; Spitkovsky
2008; Davis et al. 2013). Once the appropriate number of
merging events has been achieved, the filaments reach the size
of the ion Larmor radius. Only then is the ion flow deflected
enough for the shock to start forming. Assuming that this
happens at a time τ and following the reasoning explained in
Bret et al. (2014), the shock formation time will be 2τ in two-
dimensional (2D) space, and 3τ in three-dimensional (3D)
space.

2.1. Saturation Phase

The electron Weibel instability grows first, amplifying the
field from its fluctuation value up to nearly equipartition with
the electrons (Bret et al. 2013). The saturation time here is
given by

τ δ ω= Π− − , (1)s e e pe,
1 1

where Π is the number of e-foldings of the instability and
δ ω−

e pe
1 is its growth rate. By this time, the field has grown to

nearly equipartition with (Medvedev & Loeb 1999; Silva et al.
2003)

γ=B π n m c8 . (2)s e e,
2

0
2

From the cyclotron frequency ω γ= qB m cB s e e,s e, , we derive
the size of the filaments at saturation, which is also the
electronic Larmor radius in Bs e, (we set v0 ∼ c):

ω
γ

ω
= =L

c c

2
. (3)s e

B pe
,

s e,

We still lack a full quantitative understanding of the saturation
magnetic field and this will be explored elsewhere (K.
Schoeffler et al. 2015, in preparation).

Contrary to the electron current filamentation instability,
which has to amplify the plasma thermal fluctuations, the ion
Weibel instability finds an unstable mode already seeded and
further amplifies it, growing preferentially at that wavenumber.
This is clear from the fact that the growth rate of the ion Weibel
instability depends slowly on k for wavenumbers

⩾ +
ω

−⎡
⎣⎢

⎤
⎦⎥( )k 1

c

m

m4

1 3 3 2
pe e

i
(Davidson 1972). At saturation,

the ion Weibel instability has grown the field to

γ=B π n m c8 , (4)s i i,
2

0
2

while the size of the filaments is still given by Equation (3).
The growth time of the ion phase of the instability is

τ δ ω δ ω= =− − − −
⎛
⎝⎜

⎞
⎠⎟

B

B

m

m
ln ln . (5)s i i

s i

s e
pi i

i

e
pi,

1 ,

,

1 1 1

The total duration of this saturation phase is τ τ τ= +s s e s i, , , and
using δ δ δ≡ = m me i i e we obtain

τ δ ω=
Π

+− −
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Considering a number of e-foldings Π ∼20, we find that even
for an artificially low mass ratio of 100, the term
Π ≪m m m mln 1e i i e . Consequently, the duration of
the entire saturation phase simply reads τ τ∼s s i, . In reality,

the ion growth rate δi is lower than δ m me e i , that is, the
growth rate of the cold ion current filamentation instability,
because it grows over a background of hot electrons. However,
the consequences are negligible (see Section 2.3).

2.2. Filament Merging Phase

The dynamics of filament merging were studied previously
in Medvedev et al. (2005), who considered a simple 2D model
of infinitely long cylindrical filaments of radius D/2, spaced at a
distance D.6

The filaments need to merge n times in order to grow from
the electronic Larmor radius (3) to the ionic radius. According
to Medvedev et al. (2005), the expression for the merging time
is different whether the transverse motion is relativistic or not
(merging of the filaments implies a motion transverse to the
flow). At any rate, the maximum transverse velocity achieved
during one merging reads (Medvedev et al. 2005)

ω
γ

=v
D1.67

4
, (7)m

pi

considering ∼v c0 . We now compare this velocity to c. For the
merging motion to be non-relativistic, we would need

γ
ω

≪ ⇒ ≪v c D
c

2.4 . (8)m
pi

If this condition is fulfilled at the end of the merging phase,
then it is always fulfilled because filaments grow with time.
Therefore, if we replace D by the ion Larmor radius

γ ω=L c2i pi, then we find that the above condition is
always satisfied.
For the regime of non-relativistic transverse merging,

Medvedev et al. (2005) established that all merging events
take approximately the same time:

τ γ ω= −2 . (9)pi0
3 2 1

This number now has to be multiplied by the total number n of
merging events. Since the initial and final filament sizes are the
electron and ion Larmor radii, respectively, n is given by
(Medvedev et al. 2005)

= ⇒ = =
( ) ( )

L L n
L L m m

2 2
ln

ln 2

ln

ln 2
. (10)i

n
e

i e i e2

The total duration of the merging phase is therefore given by

τ τ γ ω= = −( )n m m
2

ln 2
ln . (11)m i e pi0

3 2
1 2 1

2.3. Shock Formation Time

We can now proceed to the calculation of the full shock
formation time. As soon as the filaments are large enough, the

6 The notation in this paper differs from that used in Medvedev et al. (2005).
The correspondence is obtained by replacing the quantity I μ0 0 , found in
Medvedev et al. (2005), with ω γD v 4pi 0 .
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ions are efficiently deflected by the field over a distance close
to the ion Larmor radius. This happens at a time τ τ+s m. Then,
assuming δ γ=− 21 (Bret et al. 2010), we find

τ τ γ ω

γ ω

+ = +

≃

−

−

⎛
⎝⎜

⎞
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m

m
m

m

1

2

2
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4.43 ln . (12)

s m
i

e
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i

e
pi

3 2

3 2
1 2 1

1 2 1

We thus find that the merging time is longer than the ion
Weibel saturation time by a factor of ∼2 ln 2 11.53 . Conse-
quently, the uncertainty on the ion Weibel growth rate does not
significantly affect the formation time. In order to find out
whether or not the flow is stopped in the overlapping region by
τ τ+s m, we need to compare τ τ= +L c2 ( )s m , that is, the size
of the region at this time, with the ion Larmor radius Li. It is
straightforward to show that

= ≫L L
m

m
8.83 2 ln 1. (13)i

i

e

Consequently, the incoming flow is stopped in the overlapping
region and the shock starts to form. The downstream density at
time τ τ+s m is still only twice the upstream density. In order to
reach the expected density jump of three for the 2D case,7 the
system needs to evolve another τ τ+s m since the overlapping
region no longer expands (Bret et al. 2014). In the 3D case, the
expected density jump is ≈4 so that it is necessary to wait
another τ τ+2( )s m to bring enough material into the central
region. Note that the present 2D model of filament merging has
been successfully tested against 3D PIC simulations
(Medvedev et al. 2005). The shock formation time τ f i, finally
reads

τ
γ ω= −

d

m

m
4.43 ln , (14)

f i i

e
pi

, 1 2 1

where d is the dimensionality of the system ( =d 2 (3) for a 2D
(3D) setup). It is worth noting that the expression does not
reduce to that obtained for a pair plasma by setting =m me i

(Bret et al. 2013, 2014). The reason for this is that here we
neglect the electron instability phase in the end result. Finally,
we note that shocks in electron–ion plasmas form much slower
than in pair plasmas for two reasons: on the one hand, the
instability mechanism is slower; on the other hand, the merging
phase is negligible in pair plasmas because the instability
already generates filaments and fields sufficiently large to
deflect the flow.

2.4. Comparison with the Pair Shock Formation Time

To compare the shock formation times of pair and electron–
ion shocks, Equation (1) provides the formation time τ f e, for
the pair case (Bret et al. 2014)

τ τ δ ω= = Π− −d d (15)f e s e e pe, ,
1 1

in terms of the dimension d of the problem, whereas from
Equation (14) we obtain for electron–ion shocks

τ
τ

=
Π ( )m m m m

6.2
ln . (16)

f i

f e
i e i e

,

,

Considering Π ∼12, which is the value obtained in the pair
shock simulations presented in the next section, we find that an
electron–ion shock forms 60 times slower than a pair shock for
a mass ratio of 400, and 166 times slower for a realistic mass
ratio. For a mass ratio of 400, τ τ= m m3f i i e f e, , whereas

τ τ= m m2.4f i i e f e, , for a mass ratio of 100.

3. DISCUSSION OF THE RESULTS

Here, we present a series of 2D PIC simulations in order to
validate the theoretical model. The counterstreaming beams
were simulated in a simulation box with a perfectly reflecting
wall in the longitudinal direction and periodic transverse
boundary conditions. The bulk propagates along the x1 axis
with Lorentz factors γ = −25 100

3, mass ratios

= −m m 50 400i e , and γ=μ 106
0. The simulation box dimen-

sions are γ ω=L c450x pe0 and γ ω=L c150y pe0 with
γ ωΔ = Δ = c0.05x y pe0 .

The magnetic field energy density is plotted in Figure 1 to
obtain information concerning the role of the filamentation
instability as a mediator of the shock formation. This was done
for a small slab along x1 in a region close to the wall, which
will later be a region far downstream.
In the pair shock case, the linear phase of the instability—

where the magnetic field grows exponentially in time and the
magnetic field energy density is δ∝ texp(2 )B e —can be clearly
distinguished from the nonlinear phase where the magnetic
field has saturated. The growth rate of the cold electron
instability very well fits the theoretical value δ ω= 0.28e pe as
well as the saturation field ω≈B m c e7f e e pe, . The predicted
saturation time of the filamentation instability of the pair shock
τ ω= −40s e pe,

1 and steady-state shock formation time

τ ω= −80f e pe,
1 are shown in Figure 1 and well match the

simulation data.
In the case of the electron–ion shock with =m m 400i e , the

evolution of the magnetic energy density shows several stages.
The ion Weibel instability grows slower than

Figure 1. Normalized magnetic energy density for an electron–ion shock with
=m m 400i e (blue) and a pair shock (black) with γ = 250 . The lines indicate

the saturation times of the filamentation instability and the shock formation
times.

7 See Stockem et al. (2012) and Bret (2015) for the validity of the Rankine–
Hugoniot jump conditions in collisionless plasmas.
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δ δ ω= =m m 0.014i e i e pe due to the influence of the hot
electron background (Shukla et al. 2012), which is negligible
when compared to the full formation time. The final magnetic
field at the saturation of the ion instability approximately
matches the theoretical value ω≈B cm e140f i e pe, as well as

the saturation time in the simulation τ ω= −18s i pi,
1. The

theoretical model predicts a saturation time of ω −13 pi
1 (see

Equation (5)).
The black lines in Figure 2 indicate the shock front of the

steady-state shock with a jump of =n n 32 1 . This line is
extrapolated to =x 01 in order to define the shock formation
time τ f as the intersection with the time axis. For the pair shock
(Figure 2(a)), τf matches the theoretical value τ τ= 2f e s e, , ,
while for the electron–ion shock we observe
τ ω τ ω= ≫ =− −226 2 36f i pi s i pi,

1
,

1 (Figure 2(b)). A systematic
study with different velocity and mass ratio parameters
provided a factor of m m2.5 i e with respect to the shock
formation of pair shocks, which is consistent with
Equation (14) (see Figure 3). The shock width imposes an
uncertainty on the determination of the shock formation time,
which is represented by the error bars in Figure 3.

The delayed shock formation process in electron–ion shocks
due to the merging of the filaments is demonstrated in Figures 4
and 5. In both cases, the accumulation of particles becomes
very effective at the time when the phase space of the different
beams starts to mix (Figure 4). The first ions start to recirculate
and change the sign of their longitudinal momentum. In panels
(c) and (d) of Figure 4, this is demonstrated by a small fraction
of particles close to zero momentum. At this stage, the
magnetic field turbulent scales are large enough that the ions
can finish at least half a gyro circle and the accumulation of
particles becomes efficient. In pair shocks, this process occurs
right after the saturation of the filamentation instability, at
ω =t 65pe , whereas in electron–ion shocks this process takes
much longer. For a mass ratio of =m m 400i e , the efficient
gyro reflection was observed only at ω =t 226pi , which is
slightly before the steady-state shock has formed.

An analysis of the magnetic field structure confirms this
result. At the time when the magnetic field saturates, the
transverse size of the magnetic field flux tubes is still too small
to scatter the ions efficiently. The particles will feel the impact
of another flux tube long before they can finish a gyro circle.
For pair plasmas (Figure 5(a)), the magnetic filaments at
saturation time τ ω= −40s e pe,

1 have reached a transverse spread
of 4 ωc pe, while the maximum magnetic field strength is of the
order of ω=B m c e3 e pe3 . Particles with Lorentz factors
γ ⩽ 12 have Larmor radii that fit into this scale, meaning that
they can recirculate in the field before being deflected by a
different flux tube. This situation is different for electron–ion
plasmas. For comparison, we plotted the magnetic field
structure at τ ω= −18s i pi,

1 in Figure 5(b). At this stage, the
magnetic field filaments show a transverse size on the order of
2 ωc pi while ω≈B m c e5 e pe3 , and so only particles with non-
relativistic Lorentz factors γ ∼ 1 will have Larmor radii on the
same scale as the magnetic field tubes. The filaments have to
undergo a further merging process as described in
Equation (11) until the transverse filament size becomes the
size of the ion Larmor radius for particles with γ > 25.

4. CONCLUSIONS

We have investigated the full shock formation process in
electron–ion plasmas in both theory and simulations. In
contrast to electron–positron pair shocks where the shock
formation time was found to be twice the saturation time of the
filamentation instability, τ τ= 2f e s e, , , for electron–ion shocks

the process is delayed to approximately τ τ= m m3f i i e f e, , .
The shock formation time is a sum of the saturation time of the
instability plus an additional merging time, coming from the
merging of filaments to the ion Larmor radius. At the time of
the saturation of the instability, the filament size is still on the
order of the electron Larmor radius. An extra time τm is thus
necessary to meet the condition of shock formation, which is
not the case for pair shocks. We applied the theory of
Medvedev et al. (2005) to predict the merging time τm. The
merging time retrieved from 2D PIC simulations is in
agreement with theory and the shock formation time was
confirmed to be τ τ+2( )s i m, . Slightly before this time, the first
recirculation of ions was observed. At this stage, the scale of
magnetic turbulence is large enough to trigger the density
compression that precedes the full shock formation.
The different scales of magnetic turbulence in electron–ion

shocks compared with pair shocks could have consequences for

Figure 2. Ion density against space x1 and time t in units of
ω ω=− −m mpi i e pe

1 1 for γ = 250 , =m m 1i e (a) and =m m 400i e (b). The
black line indicates the shock front with =n n 32 1 and the pair shock for
comparison (dashed blue).

Figure 3. Shock formation time τ f i, vs. γ0 for a 2D pair shock with =m m 1i e

(black; Bret et al. 2014) and an electron–ion shock with different mass ratios
(red). The error bars determine the uncertainty due to the finite size of the
shock front.
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the particle acceleration process. We will investigate this in our
following project.
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