28 research outputs found
Derivation of nearest-neighbor DNA parameters in magnesium from single-molecule experiments
DNA hybridization is an essential molecular reaction in biology with many applications. The nearest-neighbor (NN) model for nucleic acids predicts DNA thermodynamics using energy values for the different base pair motifs. These values have been derived from melting experiments in monovalent and divalent salt and applied to predict melting temperatures of oligos within a few degrees. However, an improved determination of the NN energy values and their salt dependencies in magnesium is still needed for current biotechnological applications seeking high selectivity in the hybridization of synthetic DNAs. We developed a methodology based on single molecule unzipping experiments to derive accurate NN energy values and initiation factors for DNA. A new set of values in magnesium is derived, which reproduces unzipping data and improves melting temperature predictions for all available oligo lengths, in a range of temperature and salt conditions where correlation effects between the magnesium bound ions are weak. The NN salt correction parameters are shown to correlate to the GC content of the NN motifs. Our study shows the power of single-molecule force spectroscopy assays to unravel novel features of nucleic acids such as sequence-dependent salt corrections
From free energy measurements to thermodynamic inference in nonequilibrium small systems
Fluctuation theorems (FTs), such as the Crooks or Jarzynski equalities (JEs), have become an important tool in single-molecule biophysics where they allow experimentalists to exploit thermal fluctuations and measure free-energy differences from non-equilibrium pulling experiments. The rich phenomenology of biomolecular systems has stimulated the development of extensions to the standard FTs, to encompass different experimental situations. Here we discuss an extension of the Crooks fluctuation relation that allows the thermodynamic characterization of kinetic molecular states. This extension can be connected to the generalized JE under feedback. Finally we address the recently introduced concept of thermodynamic inference or how FTs can be used to extract the total entropy production distribution in nonequilibrium systems from partial entropy production measurements. We discuss the significance of the concept of effective temperature in this context and show how thermodynamic inference provides a unifying comprehensive picture in several nonequilibrium problems
Force Spectroscopy with Dual-Trap Optical Tweezers: Molecular Stiffness Measurements and Coupled Fluctuations Analysis
ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces
Force Spectroscopy with Dual-Trap Optical Tweezers: Molecular Stiffness Measurements and Coupled Fluctuations Analysis
ABSTRACT Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies
Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes
We consider a class of stochastic dynamical systems, called piecewise deterministic Markov processes, with states (x, sigma) is an element of Omega x Gamma, Omega being a region in R(d) or the d-dimensional torus, Gamma being a finite set. The continuous variable x follows a piecewise deterministic dynamics, the discrete variable sigma evolves by a stochastic jump dynamics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility and time-reversal symmetries of the process. Increasing the frequency of the sigma-jumps, the system behaves asymptotically as deterministic and we investigate the structure of its fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markovian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4): 040601, 2001; J. Stat. Phys. 107(3-4): 635-675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at http://www.arxiv.org/abs/0807.4457, 2008), in the context of Markovian stochastic interacting particle systems. Finally, we discuss a Gallavotti-Cohen-type symmetry relation with involution map different from time-reversal
Counter-propagating dual-trap optical tweezers based on linear momentum conservation
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces