26 research outputs found

    Anomalous blocking over Greenland preceded the 2013 extreme early melt of local sea ice

    Get PDF
    The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade-1 earlier from 1979-2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013 below the 1981-2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt about 50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change

    The sensitivity of primary productivity in Disko Bay, a coastal Arctic ecosystem, to changes in freshwater discharge and sea ice cover

    Get PDF
    The Greenland ice sheet is melting, and the rate of ice loss has increased 6-fold since the 1980s. At the same time, the Arctic sea ice extent is decreasing. Meltwater runoff and sea ice reduction both influence light and nutrient availability in the coastal ocean, with implications for the timing, distribution, and magnitude of phytoplankton production. However, the integrated effect of both glacial and sea ice melt is highly variable in time and space, making it challenging to quantify. In this study, we evaluate the relative importance of these processes for the primary productivity of Disko Bay, west Greenland, one of the most important areas for biodiversity and fisheries around Greenland. We use a high-resolution 3D coupled hydrodynamic–biogeochemical model for 2004–2018 validated against in situ observations and remote sensing products. The model-estimated net primary production (NPP) varied between 90–147 gC m−2 yr−1 during 2004–2018, a period with variable freshwater discharges and sea ice cover. NPP correlated negatively with sea ice cover and positively with freshwater discharge. Freshwater discharge had a strong local effect within ∼ 25 km of the source-sustaining productive hot spots during summer. When considering the annual NPP at bay scale, sea ice cover was the most important controlling factor. In scenarios with no sea ice in spring, the model predicted a ∼ 30 % increase in annual production compared to a situation with high sea ice cover. Our study indicates that decreasing ice cover and more freshwater discharge can work synergistically and will likely increase primary productivity of the coastal ocean around Greenland.publishedVersio

    The Day after Tomorrow - uniformitaristernes mareridt?

    Get PDF
    Dmi.dk har smugkigget på The Day after Tomorrow. Filmen er sprængfyldt med vilde, visuelle vejrfænomener; som vi i denne artikel sætter under meteorologisk lup. Hvad er fup,  og hvad er fakta

    Greenland Ice Sheet late-season melt: investigating multi-scale drivers of K-transect events

    Get PDF
    One consequence of recent Arctic warming is an increased occurrence and longer seasonality of above-freezing air temperature episodes.There is significant disagreement in the literature concerning potential physical connectivity between high-latitude open water duration proximate to the Greenland Ice Sheet (GrIS) and unseasonal (i.e. late summer and autumn) GrIS melt events. Here, a new date of sea ice advance (DOA) product is used to determine the occurrence of Baffin Bay sea ice growth along Greenland’s west coast for the 2011–2015 period. For the unseasonal melt period preceding the DOA, northwest Atlantic Ocean and atmospheric conditions are analyzed and linked to unseasonal melt events observed at a series of on-ice automatic weather stations (AWS) along the K-transect in southwest Greenland. Mesoscale and synoptic influences on the above and below freezing surface air temperature events are assessed through analyses of AWS wind, pressure, and humidity observations. These surface observations are further compared against Modèle Atmosphérique Régional (MAR), Regional Atmospheric Climate Model (RACMO2), and ERA-Interim reanalysis fields to understand the airmass origins and (thermo)dynamic drivers of the melt events. Results suggest that the K-transect late season, ablation zone melt events are strongly affected by ridging atmospheric circulation patterns that transport warm, moist air from the sub-polar North Atlantic toward west Greenland. While thermal conduction and advection off south Baffin Bayopen waters impact coastal air temperatures, consistent with previous studies, marine air incursions from Baffin Bay onto the ice sheet are obstructed by barrier flows and the pressure gradient-driven katabatic regime along the western GrIS margin

    Winter mixed layer development in the central Irminger Sea : the effect of strong, intermittent wind events

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 541-565, doi:10.1175/2007JPO3678.1.The impact of the Greenland tip jet on the wintertime mixed layer of the southwest Irminger Sea is investigated using in situ moored profiler data and a variety of atmospheric datasets. The mixed layer was observed to reach 400 m in the spring of 2003 and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. A typical tip jet event is associated with a low pressure system that is advected by upper-level steering currents into the region east of Cape Farewell and interacts with the high topography of southern Greenland. Heat flux time series for the mooring site were constructed that include the enhancing influence of the tip jet events. This was used to force a one-dimensional mixed layer model, which was able to reproduce the observed envelope of mixed layer deepening in both winters. The deeper mixed layer of the first winter was largely due to a higher number of robust tip jet events, which in turn was caused by the steering currents focusing more storms adjacent to southern Greenland. Application of the mixed layer model to the winter of 1994–95, a period characterized by a high-NAO index, resulted in convection exceeding 1700 m. This prediction is consistent with hydrographic data collected in summer 1995, supporting the notion that deep convection can occur in the Irminger Sea during strong winters.KV and RP were supported by National Science Foundation Grant OCE-0450658. GWKM was supported by the Canadian Foundation for Climate and Atmospheric Sciences. MHR was supported by the Nordic Council of Ministers (West-Nordic Ocean Climate)

    Rapid response of Helheim Glacier in Greenland to climate variability over the past century

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 37-41, doi:10.1038/ngeo1349.During the early 2000s the Greenland Ice Sheet experienced the largest ice mass loss observed on the instrumental record1, largely as a result of the acceleration, thinning and retreat of major outlet glaciers in West and Southeast Greenland2-5. The quasi-simultaneous change in the glaciers suggests a common climate forcing and increasing air6 and ocean7-8 temperatures have been indicated as potential triggers. Here, we present a new record of calving activity of Helheim Glacier, East Greenland, extending back to c. 1890 AD. This record was obtained by analysing sedimentary deposits from Sermilik Fjord, where Helheim Glacier terminates, and uses the annual deposition of sand grains as a proxy for iceberg discharge. The 120 year long record reveals large fluctuations in calving rates, but that the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity coincides with increased Atlantic Water and decreased Polar Water influence on the shelf, warm summers and a negative phase of the North Atlantic Oscillation. Our analysis provides evidence that Helheim Glacier responds to short-term (3-10 years) large-scale oceanic and atmospheric fluctuations.This study has been supported by Geocenter Denmark in financial support to the SEDIMICE project. CSA was supported by the Danish Council for Independent Research│Nature and Universe (Grant no. 09-064954/FNU). FSt was supported by NSF ARC 0909373 and by WHOI’s Ocean and Climate Change Institute and MHRI was supported by the Danish Agency for Science, Technology and Innovation.2012-06-1
    corecore